Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  spectral data processing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Spectrometry, especially spectrophotometry, is getting more and more often the method of choice not only in laboratory analysis of (bio)chemical substances, but also in the off-laboratory identification and testing of physical properties of various products, in particular - of various organic mixtures including food products and ingredients. Specialised spectrophotometers, called spectrophotometric analysers, are designed for such applications. This paper is on the state of the art in the domain of data processing in spectrophotometric analysers of food (including beverages). The following issues are covered: methodological background of food analysis, physical and metrological principles of spectrophotometry, the role of measurement data processing in spectrophotometry. General considerations are illustrated with examples, predominantly related to wine and olive oil analysis.
EN
To improve the estimation of active power, the possibility of estimating the amplitude square of a signal component using the interpolation of the squared amplitude discrete Fourier transform (DFT) coefficients is presented. As with an energy-based approach, the amplitude square can be estimated with the squared amplitude DFT coefficients around the component peak and a suitable interpolation algorithm. The use of the Hann window, for which the frequency spectrum is well known, and the three largest local amplitude DFT coefficients gives lower systematic errors in squared interpolated approach or in better interpolated squared approach than the energy-based approach, although the frequency has to be estimated in the first step. All investigated algorithms have almost the same noise propagation and the standard deviations are about two times larger than the Cramér-Rao lower bound.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.