Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  specific stiffness
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of the study was to evaluate selected mechanical properties and structural characteristics of samples manufactured using composite filament fabrication (CFF) technology from Onyx material, whichwas filled with continuous glass fiber. Selected mechanical properties were correlated with the density of the resulting composite to determine the specific strength of the fabricated parts. The test specimens were manufactured on a Mark Two Enterprise machine (Markforged, USA) using composite filament fabrication (CFF) technology. The material used was polyamide 6.6 with a 20% short carbon fiber content with the trade name Onyx. Continuous glass fiber was used to reinforce the fabrication. The density of the manufactured samples was determined using a hydrostatic method. Methanol was used as the liquid. By determining the density of the samples, it was possible to estimate through appropriate calculations what specific strength and specific modulus the obtained composites would have. Determination of tensile and flexural strengths was carried out in accordance with ISO 527-1:2012 and ISO 178:2003. Determination of the impact tensile strength of the samples was carried out in accordance with ISO 8256, the beams were tested using the A method. Due to the high impact tensile strength, two 1 mm notches with an angle of 45°were made on the specimens. The image of the sample structure obtained by the CFF method was recorded using a CT scanner. A thermogravimetric test (TG) of the Onyx matrix material was carried out. The samples were tested approximately 72 hours after fabrication. Filling the samples with continuous glass fiber above 50% leads to a slight increase in impact resistance. The density of the composite increased by only 16% relative to the reference samples, resulting in a 389% increase in the maximum average flexural strength. Despite significant discontinuities in the structure of the produced composite, it was possible to record an increase in tensile strength and Young’s modulus by 606% and 370%, respectively.
EN
Lattice materials (LM) are a novel concept stemming from the combination of crystallography and structural optimisation algorithms. Their practical applications have become real with the advent of versatile additive layer manufacturing (ALM) techniques and the development of dedicated CAD/CAE tools. This work critically reviews one of the major claims concerning LMs, namely their excellent stiffness-to-weight performance. First, a brief literature review of spatially uniform LMs is presented, focusing on specific strength of standard engineering materials as compared with novel structures. An original modelling and optimisation is carried out on a flat panel subject to combined shear and bending load. The calculated generalised specific stiffness is compared against reference values obtained for a uniform panel and the panel subjected to topological optimisation. The monomaterial, a spatially repetitive solution turns out to be poorly suited for stiff, lightweight designs, because of suboptimal material distribution. Spatially non-uniform and locally size-optimised structures perform better. However, its advantage over manufacturable, topologically-optimised conventional designs can at best be marginal (< 10%). Cubic-cell lattices cannot replace conventional bulk materials in the typical engineering use. The multi-cell-type and multi-material lattice structures, albeit beyond the scope of this article, are more promising from the point of view of mechanical properties. The possibility of approaching the linear scaling reported in the recent litterature can make them an attractive option in ultra-low weight designs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.