Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  spam detection
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Antyscam : Practical Web Spam Classifier
EN
To avoid of manipulating search engines results by web spam, anti spam system use machine learning techniques to detect spam. However, if the learning set for the system is out of date the quality of classification falls rapidly. We present the web spam recognition system that periodically refreshes the learning set to create an adequate classifier. A new classifier is trained exclusively on data collected during the last period. We have proved that such strategy is better than an incrementation of the learning set. The system solves the starting–up issues of lacks in learning set by minimisation of learning examples and utilization of external data sets. The system was tested on real data from the spam traps and common known web services: Quora, Reddit, and Stack Overflow. The test performed among ten months shows stability of the system and improvement of the results up to 60 percent at the end of the examined period.
PL
Artykuł przedstawia analizator implementacji SMTP, którego głównym celem jest detekcja niechcianych wiadomości email. Artykuł ten jest rozwinięciem systemu „B@bel”, który bazuje między innymi na rozpoznawaniu dialektów SMTP. W pracy przedstawiono nowe rozszerzenia analizatora dialektów SMTP, które znacznie redukują ilość wyników oznaczonych jako FN (False Negative). Ponadto, wyniki zostały zweryfikowane na podstawie danych z serwera pocztowego odpowiedzialnego za kolekcję spamu.
EN
This article presents analyzer, which is responsible for detection of unsolicited email messages on the basis of SMTP implementation. Paper provides an extension to the already known “B@bel” system, which is based on the analysis of so called SMTP dialects. In this work, new extensions are presented, which are responsible for the reduction of FN results (False Negative). Moreover, results have been verified on the basis of a real operating spamtrap.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.