Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  spajanie wybuchowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy analizowano zmiany mikrostrukturalne oraz formowanie się nowych faz w wielowarstwowych układach platerów zbudowanych na bazie Ti i Al. Wykorzystano techniki mikroskopii optycznej i skaningowej mikroskopii elektronowej, pomiary mikrotwardości, a także próbę zginania w warunkach udarowych. Obserwacje w skali makro pokazały, że w procesie spajania wytworzono 15-warstwowy plater wolny od nieciągłości strukturalnych. Powierzchnie połączenia uległy silnemu odkształceniu i wykazywały mieszany falisto-płaski charakter ze strefami przetopień preferencyjnie lokowanymi na grzbiecie oraz w zawinięciach fal. Zaobserwowano, że silnie pofalowane granice połączenia zawsze formowały się w warstwach położonych w pobliżu ładunku wybuchowego. Analizy w mikro skali udokumentowały występowanie cienkiej warstwy przetopionej o silnie rozdrobnionej strukturze.
EN
Microstructure and phase in the bonding zone of explosively welded Ti/Al multilayer clads were examined by optical microscopy and scanning electron microscopy. The defect-free multilayer composite was successfully formed. The macro-scale observations showed that the interfaces between joined plates presented mixed wavy/flat shape with solidified melt inclusions located preferentially at the crest of each wave and in the wave vortex. It was found that interfaces of wavy character were always formed in layers near the explosive charge and flattened with the increase of the distance from the top surface. The micro-scale analyses observations revealed a presence of very thin reaction layer at the flat parts of the joint plates and nano-grained structure of melted zones.
PL
W pracy analizowano zmiany, jakie dokonują się w warstwach pośrednich dwuwarstwowych układów platerów stal węglowa/Zr wytwarzanych z wykorzystaniem energii wybuchu oraz wpływem tych zmian na makroskopowe własności wyrobu. Zmiany mikrostrukturalne, w składzie chemicznym oraz w wielkości umocnienia analizowano w stanie „po spojeniu” na próbkach wyciętych z platerów wytworzonych przy zróżnicowanej prędkości detonacji. W prowadzonej analizie kluczowe są przemiany wywołane „dynamicznymi” zmianami temperatury. Przeprowadzone badania wykazały, że proces spajania prowadzi do nadtopienia łączonych metali, a ekstremalnie duże szybkości chłodzenia sprzyjają formowaniu się w strefie przetopień twardych faz amorficznych lub drobnokrystalicznych o zróżnicowanym składzie chemicznym. Stwierdzono, że silne obniżenie własności wytrzymałościowych plateru związane jest ze wzrostem ilości „grubych” stref przetopień, w których pojawiają się makro- i mikropęknięcia. Natomiast pojawienie się pomiędzy łączonymi blachami cienkiej, ciągłej warstwy przetopień, pozbawionej pęknięć, sprzyja poprawie parametrów wytrzymałościowych połączenia. Warstwa ta, o grubości mierzonej w dziesiątkach nanometrów umożliwia trwałe „spojenie” łączonych metali.
EN
The paper analyzes the changes of microstructure, chemical and phase composition taking place in the joint area of explosively welded carbon steel with zirconium sheets and their effect on the strength of such connection. The performed analysis showed that the ‘dynamic’ changes of temperature accompanying such processes are of key importance. The explosive welding process leads to a local melting of the metal sheets, which next allows crystallization of brittle phases. Presence of the latter affects the mechanical properties of the final clad. Extremely high cooling rates in the joining area favour, the formation of meta-stable phases. It was observed that, in order to obtain joint of high strength, a presence of thin continuous re-melted layer between the joined metal sheets is necessary. This layer, of mixed amorphous and nano-crystalline microstructure, of tens of nanometers thick, enables formation of a ‘good weld’ between the joined metal sheets.
PL
W niniejszym artykule poddano ocenie wpływ obróbki cieplnej na własności mechaniczne oraz strukturę strefy połączenia bimetalu cyrkon (Zr 700) – stal (P355NL2). Badania prowadzono dla złączy o różnej charakterystyce strefy połączenia. Przedstawiono wyniki badań wytrzymałościowych (Ro, Rs, Rm), pomiaru (mikro)twardości oraz badań strukturalnych, prowadzonych zarówno w makro- jak i mikro- skali. Analiza wyników uzyskanych w badaniach mechanicznych i mikrostrukturalnych pozwala na stwierdzenie, że procesy obróbki cieplnej wpływają, na jakość uzyskanego połączenia. Istotnym jest dobór odpowiedniej temperatury, gdyż wraz z jej wzrostem zmniejsza się wytrzymałość strefy połączenia. Zastosowanie takich samych warunków obróbki dla materiałów o różnej charakterystyce złącza wykazało, że obróbka ta nie ma większego wpływu na wytrzymałość na ścinanie, natomiast w znaczący sposób wpływa na wytrzymałość na rozciąganie i odrywanie. W przypadku próbek o akceptowalnym udziale warstwy międzymetalicznej (RGP w przedziale 0-10 μm) obróbka cieplna spowodowała zmniejszenie Rm o ok. 30 %, natomiast Ro o ok. 15 %. Odwrotną tendencję zaobserwowano w przypadku bardzo dużego udziału warstwy przetopionej w złączu. Wzrost prędkości detonacji podczas procesu zgrzewania wybuchowego powoduje nie tylko zwiększony udziału obszarów przetopionych w złączu, lecz również wzrost strefy odkształcenia plastycznego, a tym samym umocnienia w okolicy granicy połączenia. Potwierdzają to pomiary mikrotwardości dla prezentowanych w pracy przypadków. Zastosowanie obróbki cieplnej powoduje zmniejszenie umocnienia w strefie połączenia, co szczególnie silnie obserwowane jest w materiale podstawowym, tj. stali. Zjawisko to jest efektem pełnej rekrystalizacji ziaren w strefie odkształcenia plastycznego.
EN
The thermal treatment is an important issue in producing material by means of explosion welding. The selection of the method and settings of the heat treatment depends on the chemical composition of the welded materials, and, in industrial conditions, also the dimensions (due to their tendency to deformation during heating and cooling cycles).This paper assesses the effect of the heat treatment on the mechanical properties and the structure of the bond zone in zirconium (Zr 700) – steel (P355NL2) bimetal. The investigations were performed for welds with varied characteristics of the bond zone. Experimental results were presented concerning the strength test (Ro, Rs, Rm), measurement of hardness, and structural analyses carried out in micro- and macro- scale. Mechanical and microstructural test results allow concluding that the heat treatment affect the quality of the obtained bond. The selection of temperature is paramount as the higher the temperature, the lower tensile resistance of the bond zone. Applying the same settings for materials with different characteristics showed the treatment did not considerably influence the shear strength, but significantly affects tensile and peeling strength. In the case of acceptable share of intermetallic layer (RGP in the range 0-10), the heat treatment caused decreasing Rm by about 30 % and Ro by around 15 %. A reverse tendency was observed in the case of a large share of the melt zone in the bond. The increase in the detonation velocity during explosion welding causes not only the increased share of the melted area in the bond, but also the increase of the deformed area and consequently hardening at the interface. The above is confirmed by microhardness measurements for the samples presented in this work. Applying heat treatment lowers the hardening in the bond zone, which is more pronounced in the base material (steel). This effect results from the full recrystallization of the grains in the plastic deformation area.
PL
W artykule analizowano zmiany, jakie dokonują się w warstwach pośrednich dwu- warstwowych układów na bazie stali (węglowej i austenitycznej) pokrywanej metalami reaktywnymi: Ta, Zr, Ti oraz aluminium pokrywanym miedzą. Zmiany mikrostruktury, składu chemicznego i fazowego jak też zachowanie umocnieniowe badano na próbkach w stanie po spojeniu wykorzystując zaawansowane techniki obrazowania i pomiaru składu chemicznego w skaningowej i transmisyjnej mikroskopii elektronowej. W prowadzonej analizie kluczowe są transformacje wywołane dynamicznymi zmianami temperatury. W makro- skali proces spajania prowadzi do miejscowego nadtopienia łączonych metali. Obecność stref przetopień krytycznie wpływa na własności mechaniczne i fizyczne platerów. Zaobserwowano, że w prawidłowo wykonanym platerze, oprócz wyraźnie zarysowanych stref przetopień (grubości od kilku do kilkunastu μm) zawsze występuje pomiędzy łączonymi metalami cienka warstwa strefy przetopionej (grubości kilkudziesięciu nanometrów) determinująca wystąpienie trwałego spojenia. Ekstremalnie duże szybkości chłodzenia sprzyjają formowaniu się w strefie przetopień faz amorficznych lub mieszaniny amorficzno/(ultra drobnokrystalicznej) o składach chemicznych dalekich od tych, jakie są właściwe fazom krystalizującym w warunkach stacjonarnych. W procesie wygrzewania platerów fazy amorficzne ulegają przemianie skutkującej pojawieniem się mikrostruktury drobnokrystalicznej.
EN
The layers near the interface of explosively welded plates were investigated by means of microscopic observations with the use of scanning (SEM) and transmission (TEM) electron microscopes (thin foils were prepared using Focus Ion Beam technique) equipped with energy dispersive spectrometer (EDX). Metal compositions based on steels and Ti, Zr, Ta and Cu on Al were analyzed. The study was focused on the identification of intermetallic phases inside the melted zones, the extent of melt mixing and interdiffusion between the bonded metals, as well as the changes in the dislocation structure. Electron diffractions and the TEM/EDX chemical composition measurements revealed presence of both stable and metastable phases. The crystalline or glassy nature of the solidified melt strongly depends on the chemical composition of the bonded sheets; dendrites were observed in the melted zone of the Al/Cu clad, whereas the amorphous phases and the nano- grains were identified in the bonding zone of the steel (carbon or stainless)/Zr, (carbon steel)/Ti and (stainless steel)/Ta clads. The elongated shape of the (sub)grains with the randomly distributed dislocations inside them, observed in the plates near the interface of all the metal compositions, clearly indicated that during welding deformation processes were prevailing over the softening ones.
PL
W pracy analizowano zmiany struktury i tekstury zgrzewanych wybuchowo płyt aluminiowych i miedzianych o czystości technicznej ze szczególnym uwzględnieniem zmian, jakie następują w warstwach położonych w pobliżu strefy połączenia. Przeprowadzono badania z wykorzystaniem mikroskopii świetlnej, elektronowej mikroskopii skaningowej i analizatora GENESIS oraz systemu pomiaru orientacji lokalnych metodą dyfrakcji elektronów wstecznie rozproszonych. Dla zastosowanych parametrów technologicznych procesu spajania obserwowano silne zmiany geometryczne na powierzchni łączonych blach. W najczęściej obserwowanych przypadkach uzyskane połączenie można sklasyfikować jako płaskie lub faliste z fazą pośrednią. W wyniku przetopienia w strefie połączenia obserwowano tworzenie się fazy międzymetalicznej typu CuAln, przy wartości n zawartej w zakresie 1÷2,7. Wskazuje to na zmieniającą się koncentrację Cu w Al w zależności od analizowanego obszaru. Inną charakterystyczną cechą procesu spajania było występowanie silnego rozdrobnienia struktury po obu stronach warstwy fazy międzymetalicznej. Pomimo że proces rozdrobnienia obserwowany jest zarówno w miedzi, jak i w aluminium, to efekt ten wyraźniej występuje w miedzi; w blasze tej wy- stępuje grubsza strefa o ultradrobnym ziarnie.
EN
The changes of microstructure and texture in explosively bonded aluminium and copper sheets of technical purity observed in layers located near the bonding area were analyzed in the study (Fig. 1). The bonding process was investigated with multiscale analyzes using light microscopy and scanning electron microscopy equipped with electron backscattered diffraction facility for the measurements of local orientations. For the applied technological parameters of the bonding process, strong changes in geometry of surfaces of bonded plates have been observed (Fig. 2 and 3). In most observed cases, the bonding may be classified as 'flat' or 'wavy' one with an intermediate phase. As a result of melting in the bonding area, the formation of intermetalic layer phase of CuAln-type, with n= 1÷2.7 was observed (Fig. 4). This indicates changes in Cu and Al concentrations depending on the location of analyzed area, which leads to changes in mechanical properties (Fig. 5 and 6). Other characteristic features of the bonding process were: the strong grain refinement at the both sides of intermetalic layer (more clearly observed in Cu) and strong textural changes along ND in both sheets (Fig. 7÷10).
PL
Spajanie wybuchowe jest podstawową technologią wytwarzania platerowanych tytanem i jego stopami, blach i odkuwek stosowanych w budowie elementów aparatury procesowej. Specyfika tej technologii, związana jest z dynamicznym oddziaływaniem materiału nakładanego na materiał podstawowy. Skutkuje to znaczącymi zmianami struktury obu łączonych materiałów w strefie przyzłączowej, a także w całym przekroju materiału nakładanego. Dla likwidacji tych efektów, w zakresie wyznaczonym wymaganiami wytrzymałościowymi i plastycznymi, dla konstrukcji wytwarzanej z elementów platerowanych, zalecane jest w większości przypadków, przeprowadzenie odpowiedniej obróbki cieplnej. Wytworzenie aparatu procesowego, wymaga również zaplanowania szeregu obróbek cieplnych związanych z odprężaniem spoin, formowaniem elementów, np. den, na gorąco lub na zimno, w tym z międzyoperacyjnym wyżarzaniem odprężającym. Z jednej strony mamy więc do czynienia z materiałem podstawowym, który najczęściej stanowią stale konstrukcyjne węglowe lub niskostopowe, wymagające zastosowania odpowiednio wysokich temperatur wyżarzania oraz odpowiednich czasów wytrzymania. Z drugiej strony, trwale połączony materiał nakładany - tytan lub stop tytanu, który cechuje się wysoką wrażliwością na wysokotemperaturowe utlenianie czy degradacje własności związaną z rozpuszczaniem innych gazów atmosferycznych, jak wodór czy azot. Również efekty dyfuzyjne pomiędzy tytanem i stalą, zachodzące podczas obróbki cieplnej lub długotrwałej pracy złącza w podwyższonej temperaturze, nie są obojętne dla jego wytrzymałości. Opracowując technologie platerowania tytanem, wytypowano i w ramach przyjętego cyklu prób i badań, zweryfikowano cztery rodzaje obróbek cieplnych. Uwzględniono w tej mierze, tak doświadczenia własne, jak i wymagania postawione wytwórcom platerów, przez takie firmy, jak Mitsui Engineering & Shipbuilding, czy Hitachi. Dodatkowo, w zakresie najwyższej zastosowanej temperatury, przyjęto sugestie związane z planowanym procesem wytwarzania den metoda tłoczenia na gorąco w układzie stempel - pierścień ciągowy. W opracowaniu przedstawiono wyniki badań stanowiących podstawę do właściwej oceny, jakości złączy tytan - stal, wytwarzanych metodą platerowania wybuchowego. Opisano wykonane, symulacyjne obróbki cieplne modelowych elementów tytan-stal, w aspekcie ich przemysłowych aplikacji. W oparciu o wykonane badania makro i mikrostrukturalne, jak również powiązane z nimi badania właściwości mechanicznych, przedstawiono wpływ obróbek cieplnych na właściwości złącza tytan - stal, strefy przyzłączowej oraz materiałów składowych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.