Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  spacecraft software system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Software reliability prediction is very important to minimize cost and improve software development effectiveness, especially in a spacecraft’s software system. In this paper, a new spacecraft software system reliability definition is given and a new reliability prognostics-oriented life cycle integrated system health management for a spacecraft software system is focused on. Adaptive genetic algorithms are then combined with a support vector machine to build an adaptive genetic algorithm support vector machine reliability prediction model. This model attempts to overcome the genetic algorithm weaknesses, such as the local minima and premature convergence problems, and solves the parameter selection difficulties often encountered in a support vector machine. After construction, the proposed adaptive genetic algorithm support vector machine model is employed to predict the reliability of a spacecraft software system. Finally, a numerical example is given to show how the proposed approach has a superior prediction performance compared to a standard support vector machine and artificial neural network.
PL
Przewidywanie niezawodności oprogramowania odgrywa ważną rolę w minimalizowaniu kosztów i poprawie efektywności tworzenia oprogramowania, zwłaszcza w odniesieniu do systemów oprogramowania statków kosmicznych. W niniejszej pracy, podano nową definicję niezawodności systemu oprogramowania statku kosmicznego koncentrując uwagę na opartym na prognozowaniu niezawodności oraz cyklu życia modelu zintegrowanego zarządzania kondycją systemu opracowanego dla systemu oprogramowania statku kosmicznego. Skonstruowano następnie model przewidywania niezawodności oparty na połączeniu adaptacyjnych algorytmów genetycznych oraz maszyny wektorów nośnych. Model ten stanowi próbę przezwyciężenia słabości algorytmów genetycznych, takich jak problem minimów lokalnych czy problem przedwczesnej zbieżności, a także rozwiązania trudności związanych z doborem parametrów, jakie często występują przy zastosowaniu maszyny wektorów nośnych. Skonstruowany model opartej na adaptacyjnym algorytmie genetycznym maszyny wektorów nośnych zastosowano do przewidywania niezawodności systemu oprogramowania statku kosmicznego. Wreszcie, przedstawiono przykład liczbowy, który pokazuje że opracowany model charakteryzuje się wyższą dokładnością prognozowania w porównaniu do standardowej maszyny wektorów nośnych oraz sztucznej sieci neuronowej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.