Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sonochemistry
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Cavitation has been widely used in wastewater degradation, material synthesis and biomedical field under dual-frequency acoustic excitation. The applications of cavitation are closely related to the power (i.e. the rate of internal energy accumulation) during bubble collapse. The Keller–Miksis equation considering liquid viscosity, surface tension and liquid compressibility is used to describe the radial motion of the bubble. The model is built in predicting the power during bubble collapse under dual-frequency acoustic excitation. The influences of parameters (i.e. phase difference, frequency difference, and amplitude ratio) on the power are investigated numerically. With the increase of phase difference, the power can be fluctuated in a wide range at all conditions. Three typical characteristics of the power appear under the effects of frequency difference and amplitude ratio. With the increase of amplitude ratio, if the frequency difference is small, the power has two maximum values; and if the frequency difference is medium, there is a maximum value. Otherwise, the power monotonously decreases. The results can provide theoretical references for the selections of experimental parameters of sonoluminescence and sonochemistry in the dual-frequency acoustic field.
EN
Nanomaterials are the latest group of materials which owes its special features thanks to their nanosize. The most characteristic properties include the large surface area, strong chemical reactivity and tendency to agglomerate. Nanomaterials have wide applications in several disciplines, i.e. materials engineering, medicine and food technology. These materials have high potential in biomedical engineering thanks to increased biological activity when compared with the bulk material. Recent advances in nanotechnology are currently mostly focused on improvement of effective synthesis methods. Sonochemical irradiation is an effective technique for the synthesis nanoparticles. This method is widely used for inorganic nanoparticles production in contrast to organic ones, which could open powerful possibilities of creating bioactive, therapeutic or self-cleaning surfaces. In principle, the introduction of a strong acoustic field into an aqueous solution induces acoustic cavitation. The nucleation, growth and collapse of the bubble during acoustic cavitation are graphically shown in Figure 1. When the bubble reaches a certain size it become resonant with ultrasonic radiation and rapidly increase in size. Then, the bubble becomes unstable and violently collapses. The collapse of microbubbles produces extremely high localized pressures and temperatures (hundreds bar and thousands K) which lead to hot spot. Conditions of sonochemistry are rather radical in comparison to other chemical processes. Moreover, the synthesis and simultaneously embedding nanoparticles into polymer surfaces are possible. This paper constitutes a review of the recent literature in sonochemical synthesis of organic, bioactive nanoparticles. The introduction will focus on a short overview of sonochemistry, the next part will present the mechanism of formation nanoparticles using ultrasounds. Also, some advantages of sonochemistry as a tool for nanomaterials fabrication is presented. In the next section some examples of bioactive nanoparticles prepared in sonochemical reaction are listed and advantages of sonochemical synthesis are discussed.
EN
This chapter reviews the research on antibacterial functionalization of textiles with inorganic nanoparticles (Ag, MgO, Al2O3) by the sonochemical method. Sonochemistry is one of the most efficient techniques for the synthesis of nanosized materials, wherein ultrasonic waves in the frequency range of 20 kHz to 1 MHz serve as a driving force for chemical reactions. Sonochemical reactions are dependent on acoustic cavitation: the formation, growth, and explosive collapse of bubbles in irradiated liquids. Extreme conditions are developed when the bubbles collapse (temperature >5000 K, pressure >1000 atm, and cooling rates >109 K/sec), resulting in the breaking and forming of chemical bonds. The deposition of nanoparticles on the surface of natural and synthetic yarns and fabrics (wool, cotton, nylon, polyester) may be achieved using ultrasound irradiation. This process produces a uniform coating of nanoparticles on the textile surface with different functional groups. The coating can be performed by an in situ process, where the nanoparticles are formed and immediately propelled to the surface of the fabric. This approach was demonstrated with nanosilver. Alternatively, the sonochemical process can be used as a "throwing stone" technique, where previously synthesized nanoparticles are sonicated in the presence of the fabric. This process was shown with MgO and Al2O3 nanoparticles, which were propelled to the surface by microjets and adhered strongly to the textile without any additional binder. This phenomenon was explained because of the local melting of the substrate due to the high rate and temperature of nanoparticles propelled at the solid surface by sonochemical microjets. The activity of the fabric finishing with antibacterial nanoparticles was tested against Gram-negative and Gram-positive bacteria cultures. A significant bactericidal effect was demonstrated in both cases, even at a low concentration, below 1 wt.% of nanoparticles in the fabric.
PL
Dokonano przeglądu badań nad funkcjonalizacją antybakteryjną wyrobów włókienniczych nanocząsteczkami nieorganicznymi (Ag, MgO, Al2O3 ) metodą sonochemiczną. Sonochemia jest jedną z najskuteczniejszych technik syntezy nanomateriałów, w której fale ultradźwiękowe w zakresie częstotliwości od 20 kHz do 1 MHz służą jako siła napędowa dla reakcji chemicznych. Reakcje sonochemiczne są zależne od kawitacji akustycznej: powstawania, wzrostu i wybuchowego rozpadu pęcherzyków w napromieniowanych cieczach. Ekstremalne warunki powstają, gdy pęcherzyki zapadają się (temperatura > 5000 K, ciśnienie > 1000 atm, szybkość chłodzenia > 109 K/s), powodując pękanie i tworzenie wiązań chemicznych. Osadzanie nanocząsteczek na powierzchni przędz i tkanin naturalnych i syntetycznych (wełna, bawełna, nylon, poliester) można uzyskać za pomocą napromieniowania ultradźwiękowego. W tym procesie uzyskuje się jednolitą powłokę nanocząsteczek na powierzchni tkaniny z różnymi grupami funkcyjnymi. Powłokę można prowadzić w procesie in situ, w którym nanocząsteczki są formowane i natychmiast wyrzucane na powierzchnię tkaniny. To podejście zostało wykazane z nanosrebrem. Alternatywnie, proces sonochemiczny może być stosowany jako technika „rzucania kamieniami”, w którym wcześniej zsyntetyzowane nanocząsteczki są sonikowane w obecności tkaniny. Proces ten został przedstawiony za pomocą nanocząsteczek MgO i Al2O3, które zostały wyrzucone na powierzchnię za pomocą mikrodysz i silnie przylegały do tkaniny bez dodatkowego spoiwa. Zjawisko to tłumaczy się miejscowym topnieniem podłoża z powodu wysokiej szybkości i temperatury nanocząsteczek wyrzucanych na powierzchnię stałą przez sonochemiczne mikrodysze. Aktywność tkaniny wykończonej nanocząsteczkami przeciwbakteryjnymi badano na kulturach bakterii Gram-ujemnych i Gram-dodatnich. Znaczące działanie bakteriobójcze wykazano w obu przypadkach, nawet w niskim stężeniu, poniżej 1% wag. nanocząsteczek w tkaninie.
EN
In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM). The XRD analyses showed that the products were admontite [MgO(B2O3)3  · 7(H2O)] with JCPDS (Joint Committee on Powder Diffraction Standards) no. of 01-076-0540 and mcallisterite [Mg2(B6O7(OH)6)2  · 9(H2O)] with JCPDS no. of 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high efficiency and high crystallinity in the synthesis magnesium borate compounds.
PL
Zastosowanie energii ultradźwięków w połączeniu z opisanymi technikami ekstrakcyjnymi jest niewątpliwie coraz szybciej rozwijającym się obszarem nauki wykorzystywanym w laboratoriach analitycznych.
PL
W porównaniu z metodami tradycyjnymi, ultrasonifikacja niesie ze sobą wiele korzyści, z których mała uciążliwość środowiskowa, niewielki koszt i łatwość modyfikacji są najbardziej znaczące.
EN
Powders of two molybdenum carbides (Mo2C and MoC1-x) and tungsten carbide (WC) were prepared by means of temperature programmed reaction (TPR) method. Mo2C and MoC1-x were synthesized by reacting MoO3 with a preselected molar ratio of methane/hydrogen and carbon monoxide/hydrogen gas mixtures respectively. WC was prepared using tungsten oxide (WO3) and a methane/hydrogen gas mixture. These carbides were ultrasonically dispersed in de-ionized water. Samples were characterized using room temperature x-ray diffraction and scanning microscopy. A kinetic diffusion model is also studied to determine diffusivities in solids where the diffusing species desorbs or reacts at the external surfaces, and where the diffusivity does not vary appreciably with concentrations. The method involves measuring the flux of the diffusive species into the solid under the influence of a temperature program.
EN
Intense ultrasound may initiate chemical reactions in aqueous solutions. The reactivity is not uniform in the whole sonicated volume, but rather concentrated in the close vicinity of oscillating or collapsing gas bubbles formed by the action of ultrasound (cavitation bubbles). It has been shown that certain low-molecular-weight substrates, due to their partially hydrophobic properties, tend to accumulate at the surface of cavitation bubbles, thus being particularly susceptible to ultrasound-induced chemical reactions. In this paper, using an approach based on competition kinetics method, we demonstrate that this effect takes place also in the case of polymeric substrates. Relatively hydrophobic water-soluble polymer, poly(ethylene oxide), and its oligomer poly(ethylene glycol) accumulate in the close vicinity of the bubbles. Their local concentrations in these zones may be two orders of magnitude higher than the average concentration in solution. In contrast, such effect is observed neither for strongly hydrophilic polyelectrolyte chains exemplified by poly(acrylic acid), nor for dissociated sodium acetate used as a low-molecular-weight hydrophilic model. The ultrasound-induced processes employed in the competition kinetics study in this work were the reactions of substrates with hydroxyl radicals emerging from the cavitation bubbles. In order to provide quantitative comparison with a system of uniform reactivity distribution, the same reactions were studied using ionizing radiation for OH-radicals generation.
PL
Ultradźwięki o dużym natężeniu mogą inicjować w roztworach wodnych reakcje chemiczne, które nie zachodzą z jednakową intensywnością w całej objętości układu. Strefą o największej reaktywności jest bezpośrednie otoczenie oscylujących pęcherzyków kawitacyjnych, powstających w wodzie pod wpływem ultradźwięków (rys. 3). Wiadomo, że pewne związki małocząsteczkowe, ze względu na ich częściowo hydrofobowy charakter, mogą skupiać się na powierzchni takich pęcherzyków, dzięki czemu są szczególnie podatne na reakcje chemiczne inicjowane działaniem ultradźwięków. W tej pracy, stosując metody kinetyki konkurencyjnej [równanie (2)] wykazaliśmy, że podobny efekt występuje również w przypadku substratów polimerowych. Poli(tlenek etylenu) i jego odpowiednik oligomeryczny, czyli glikol polioksyetylenowy - substancje rozpuszczalne wprawdzie w wodzie, ale o wyraźnie zaznaczonych właściwościach hydrofobowych - wykazują tendencję do gromadzenia się w pobliżu granicy faz woda/pęcherzyk kawitacyjny. Ich lokalne stężenie w bezpośrednim sąsiedztwie pęcherzyków, a więc w strefie intensywnych reakcji sonochemicznych, może być nawet o dwa rzędy wielkości większe od ich średniego stężenia w roztworze. Takich efektów nie obserwuje się w przypadkach silnie hydrofilowego polimeru - zdysocjowanego poli(kwasu akrylowego) - ani octanu sodu użytego przez nas jako małocząsteczkowy model substancji silnie hydrofilowej (tabela 1, rys. 7). Procesami sonochemicznymi badanymi w tej pracy były reakcje wymienionych substratów z rodnikami hydroksylowymi generowanymi w pęcherzykach kawitacyjnych i dyfundującymi następnie poprzez granicę faz do roztworu. Aby możliwe było ilościowe określenie obserwowanych efektów, badano równolegle te same reakcje w układzie o równomiernym przestrzennym układzie reaktywności, w którym rodniki hydroksylowe były generowane za pomocą promieniowania jonizującego (rys. 5 i 8).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.