Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  solidification modelling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The knowledge of material structure allows to predict the mechanical properties of alloy casting. Such structure can be modelled in micro- and mesoscale. The first way is connected with alloy morphology and enables one to find out the shape of grains emerging during the solidification process. The second way allows to define the magnitude and distribution of these grains in the casting structure. Learning both of these ways greatly enhances one’s knowledge about such mechanical phenomena as emerging stresses, strains, hot cracking and many others. This information makes it possible for one to predict the behaviour of castings during the cooling process or the further product exploitation. The one of the most difficult issues in the numerical and computer simulations of solidification is the modelling of the structure evolving in the casting. These simulations are extremely important in the work of an engineer in the foundry industry. The paper deals with a numerical modelling of equiaxed microstructure formation during the solidification of two-component alloys. The basic enthalpy formulation was applied to model the solidification. The equiaxed grain size depends on the average cooling velocity at the moment when the liquid metal reaches the liquidus temperature. The experimentally determined dependence between grain radius and cooling velocity was used in the calculation of average grain radii distribution.
PL
Znajomość struktury materiału pozwala na przewidywanie właściwości mechanicznych odlewów. Taka struktura może być modelowana w mikro- i mezoskali. Pierwszy sposób związany jest z określeniem morfologii stopu i umożliwia znalezienie kształtu ziaren powstających podczas procesu krzepnięcia. Druga metoda pozwala określić wielkość i rozmieszczenie tych ziaren w strukturze odlewu. Znajomość obu tych sposobów znacznie poprawia wiedzę na temat takich zjawisk mechanicznych, jak pojawiające się naprężenia, odkształcenia, pękanie na gorąco i wiele innych. Informacje te pozwalają przewidywać sposób zachowania sic odlewów zarówno w trakcie procesu chłodzenia, jak i w dalszej eksploatacji produktu. Jedną z najtrudniejszych kwestii w symulacjach numerycznych i komputerowych krzepnięcia jest modelowanie struktury powstającej w odlewie. Symulacje te są niezwykle ważne w pracy inżyniera w przemyśle odlewniczym. W artykule przedstawiono numeryczne modelowanie struktury równoosiowej tworzącej się podczas krzepnięcia stopów dwuskładnikowych, w którym wy korzystano podstawowe sformułowanie entalpowe krzepnięcia. Wielkość ziaren równoosiowvch uzależniono od średniej prędkości chłodzenia wyliczonej w chwili. gdy ciekły metal osiąga temperaturę likwidusu. Do wyznaczenia rozkładu średnich promieni ziaren w odlewie wykorzystano zależność promienia ziarna od prędkości chłodzenia wyznaczoną na drodze eksperymentu.
EN
Density change occurring in ductile iron castings is a phenomenon far more complicated than in other casting alloys. Initially, graphite nodules grow directly from liquid phase. That is the reason for decrease in alloy density and casting expansion. Decaying carbon concentration in liquid phase adjacent to graphite nodules favours growth of austenite, which covers them isolating from the liquid. In order for graphite to grow further diffusion of carbon through thickening solid solution layer is needed. At this time expansion fades and shrinkage begins. Industrial experience shows that whether or not shrinkage defects in ductile iron castings will occur depends on wall thickness. In the paper an attempt to identify mechanism of shrinkage porosity formation in nodular iron castings during solidification was made. To that end a two-dimension simulation of binary Fe-C system solidification by cellular automaton method was carried out. Using data obtained with Thermo-CALC software, dependencies of temperature on density for each present phase were determined. For liquid phase and austenite influence of carbon concentration on density was also appended. Applying those relationships to the model, density of each individual cell of used grid as well as mean value for whole analysed region were assessed. The method allowed to consider volume fractions of phases and heterogeneity of solid and liquid solutions to find the mean density of the material. The paper presents results of computer simulation of nodular iron density change, with eutectic saturation of 0,9 to 1,1.
PL
Zmiany objętościowe zachodzące w odlewach z żeliwa sferoidalnego są zjawiskiem znacznie bardziej złożonym, niżeli w innych stopach odlewniczych. Początkowo krystalizacja kulek grafitu, która jest przyczyną zmniejszenia gęstości i występowania rozszerzalności przedskurczowej, przebiega bezpośrednio z fazy ciekłej. Zmniejszenie zawartości węgla w cieczy przylegającej do kulek grafitu sprzyja krystalizacji austenitu, którego warstwa izoluje te cząstki od cieczy. Dalszy wzrost grafitu wymaga dyfuzji węgla przez rosnącą warstwę roztworu stałego. Na tym etapie krystalizacji rozszerzalność zanika i zaczyna się skurcz. Z praktyki przemysłowej wiadomo, że o występowaniu wad skurczowych w odlewach z żeliwa sferoidalnego o takim samym składzie chemicznym decyduje grubości ścianki. W pracy podjęto próbę zidentyfikowania mechanizmu tworzenia się wad skurczowych w odlewach z żeliwa sferoidalnego podczas krystalizacji. W tym celu przeprowadzono dwuwymiarową symulację krystalizacji podwójnego stopu Fe-C za pomocą modelu wykorzystującego technikę automatu komórkowego. Na podstawie danych otrzymanych przy użyciu oprogramowania Thermo-CALC wyznaczono zależności gęstości poszczególnych faz występujących w układzie od temperatury, a dla roztworu ciekłego i stałego dodatkowo od stężenia węgla. Za pomocą otrzymanych zależności wyznaczano gęstość w poszczególnych komórkach stosowanej siatki obliczeniowej oraz średnią gęstość analizowanego obszaru. Metoda ta pozwoliła wyznaczyć gęstość materiału z uwzględnieniem udziałów objętościowych poszczególnych faz i niejednorodności roztworów ciekłego i stałego. W pracy przedstawiono wyniki symulacji komputerowej zmian objętościowych żeliwa sferoidalnego o stopniu nasycenia eutektycznego w granicach od 0,9 do 1,1.
PL
W pracy przeanalizowane zostały zmiany stężenia węgla i krzemu w fazie ciekłej i fazie γ stopu potrójnego Fe – 3,0% mas. C – 1,5% mas. Si podczas początkowego etapu wzrostu austenitu z przechłodzonej cieczy. Zmiany zachodzące na froncie krystalizacji analizowano poprzez wykorzystanie metody pola fazowego. Parametr pola fazowego ϕ jest związany ze składem fazowym: ϕ = 1 dla cieczy, ϕ = 0 dla roztworu stałego. Pole fazowe w tym przypadku nie jest zmienną konserwatywną, a dla opisu jej zmian zastosowano równanie Allen'a-Cahn'a. Za warunek początkowy symulacji przyjęto istnienie nierównowagowego zarodka fazy stałej o składzie chemicznym identycznym ze składem chemicznym przechłodzonej cieczy. W obliczeniach wykorzystano potencjały chemiczne pierwiastków w fazach. Różnica tych potencjałów stanowiła termodynamiczną siłę pędną przemiany, wywołującą przepływ pierwiastków. Wykazało to, że ścieżki zmian stężenia węgla i krzemu w fazie stałej oraz w cieczy są w znaczącym stopniu odchylone od równowagowej konody dla układu potrójnego o przyjętym składzie chemicznym. Oznacza to, że przyjęcie równowagowych współczynników rozdziału do wyznaczania zawartości pierwiastków stopowych w początkowym etapie wzrostu zarodka jest daleko idącym uproszczeniem. Przedstawiona metoda symulacji uwzględnia również wzajemny wpływ pierwiastków w obu fazach, w szczególności w austenicie, gdzie stężenie węgla na poziomie znacznie wyższym od wartości równowagowej w istotnym stopniu powoduje obniżenie zawartości krzemu.
EN
In the paper changes of carbon and silicon concentration in liquid phase (L) and solid phase (γ) have been analysed for a triple alloy Fe-C-Si with the composition C – 3.0wt% and Si – 1.5wt%. The analysis was conducted at the initial stage of an austenite growth in the undercooled liquid. The changes occurring at the solidification front were analysed using the Phase Field method (PF). The phase field parameter ϕ is connected with the phase composition of the cell: ϕ = 1 for the liquid, ϕ = 0 for the solid phase. The phase field, in this case, is a non-conserved variable and for its description the Allen-Cahn equation was used. As an initial condition of the simulation it was assumed that the austenite nucleus had the same composition as the undercooled liquid. In the calculation chemical potential for each element in each phase was used. The difference in the chemical potential between phases was treated as the thermodynamic driving force of transformation causing the diffusion of the elements. This showed that the paths of carbon and silicon concentration changes in the solid and liquid are substantially deviated from the tie line for the triple alloy with fixed concentration. This means that the adoption of the equilibrium distribution coefficients at the initial stage of the nucleus growth is a big simplification. Presented method of the simulation takes also into account the mutual influence of the elements in both phases, in particular in the austenite where the carbon concentration is much higher than the equilibrium value causing reduction of the silicon concentration.
EN
While modelling diffusion field at the scale of a single grain, during peritectic transformation or growth of globular eutectic, it is often assumed that elementary microdiffusion field (EMDF) has spherical shape. In such models the fact that volume fraction of the remote EMDF regions decreases with distance from grain nuclei due to random contacts with other grains, is omitted. The paper describes the usage of Averaged Voronoi Polyhedron (AVP) as the shape of EMDF. In order to profile the geometry of AVP, the Kolmogorov’s statistical theory of crystallization has been applied. The paper contains rules of derivation of difference equations applied in numerical modelling of EMDF using the Finite Difference Method. Application of AVP geometry allows to compute spatial distribution of a solute in the solid solution considering decrease in volume fraction of distant regions of the EMDF. As a result of modelling the peritectic Fe-C alloy, time relations of position of ferrite-liquid interfacial boundary during primary solidification and positions of ferrite-austenite and austenite-liquid boundaries during peritectic transformation have been acquired. Kinetics of variation of volume fractions for individual phases throughout solidification have been presented. The proposed mathematical model allows to forecast a segregation in solid solution, which has been formed as a product of peritectic transformation, both as a relation of solid solution composition versus distance from a grain nuclei and as a relation of volume fraction of regions with specific composition versus their composition.
PL
W modelowaniu pola dyfuzji w skali pojedynczego ziarna podczas przemiany perytektycznej lub podczas wzrostu eutektyki globularnej często przyjmuje się, że elementarne pole mikro-dyfuzji (EPMD) ma kształt sferyczny. W modelach tego typu jest pomijane to, iż udział objętościowy obszarów peryferyjnych EPMD w miarę oddalenia się od środka ziarna maleje z powodu losowych kontaktów z sąsiednimi ziarnami. W artykule opisano wykorzystanie elementarnego pola dyfuzji w kształcie uśrednionego wielościanu Voronoi. W celu wyznaczenia geometrii uśrednionego wielościanu Voronoi zastosowano statystyczną teorię krystalizacji Kolmogorova. W artykule opisano zasady wyprowadzenia równań różnicowych zastosowanych w modelowaniu numerycznym elementarnego pola dyfuzji z wykorzystaniem metody różnic skończonych. Zastosowanie geometrii uśrednionego wielościanu Voronoi pozwala modelować rozkład przestrzenny dodatków w roztworze stałym z uwzględnieniem zmniejszania się udziału objętościowego peryferyjnych obszarów elementarnego pola dyfuzji, spowodowanego losowymi kontaktami sąsiednich ziaren. W wyniku symulacji dla perytektycznego stopu podwójnego Fe-C uzyskano zależności od czasu pozycji granic międzyfazowych ferryt-ciecz podczas krystalizacji pierwotnej oraz granic międzyfazowych ferryt-austenit i austenit-ciecz podczas przemiany perytektycznej. Przedstawiono kinetykę zmian udziałów objętościowych poszczególnych faz podczas krzepnięcia. Proponowany model matematyczny pozwala na prognozowanie likwacji w roztworze stałym powstającym w wyniku przemiany perytektycznej zarówno w postaci zależność składu chemicznego roztworu stałego od odległości od środka ziarna, jak i w postaci zależności udziałów objętościowych obszarów od ich składu chemicznego.
EN
The subject of the paper is heat exchange in the system casting - riser - ambient. The examinations were focused on evaluating temperature dependence of the coefficient of heat exchange from mould external surface (or from riser thermally insulated surface) to ambient. The examinations were carried out for the surface temperatures of 200-800°. On the basis of the performed examinations it was stated that the relationship αext:eff vs. surface temperature can be described by a polynomial of 3rd degree with accuracy of 90-95% and that the αext:eff coefficient significantly depends on the examined material mass density.
PL
Praca dotyczy określenia temperaturowej zależności współczynników, opisujących intensywność wymiany ciepła w układzie odlew - nadlew - forma odlewnicza - otoczenie. Na podstawie pomiarów temperatury i bilansów cieplnych określono wartości sumarycznego współczynnika wymiany ciepła do otoczenia z powierzchni nagrzanej warstwy ochronnej (izolacyjnej) górnej powierzchni nadlewu, w zakresie temperatury 200-800°. Uzyskano zależności o stosunkowo dobrym dopasowaniu, na poziomie R2 (0.9-0.95). Porównawcza analiza wyników dla dwóch zbadanych materiałów, różniących się gęstością masy i pojemnością cieplną, wykazała, iż nie ma prostej zależności pomiędzy nimi, to jest wartość sumarycznego współczynnika wymiany ciepła nie zmienia się wprost proporcjonalnie do iloczynu gęstości masy i pojemności cieplnej. Uzyskane wyniki mogą być wykorzystane do określenia warunków początkowo-brzegowych w konstruowanych modelach numerycznych wymiany ciepła w układach odlew - nadlew - forma odlewnicza - otoczenie.
EN
The subject of the paper is heat exchange in the system casting - riser - ambient. The examinations were focused on evaluating temperature dependence of the coefficient of heat exchange from open (not shielded) top surface of riser to ambient. The examinations were carried out on the open surface of cast steel riser, of temperatures 1000-1500°C. On the basis of the performed examinations it was stated that heat emission coefficient changes its mean values by about 50% during feeding process of the mild steel casting, i.e. from about 0.28 in liquid state to about 0.42 at temperatures close to solidus. This wide range of surface heat emissivity changes should be taken into account when boundary conditions are formulated in elaborated models of solidification and in designing risering systems.
PL
Przedmiotem artykułu jest wymiana ciepła w systemie odlew - nadlew - otoczenie. Celem badań było wyznaczenie temperaturowej zależności współczynnika wymiany ciepła z odkrytej, nieizolowanej powierzchni nadlewu do otoczenia. Badania wykonano dla odlewu staliwnego z odkrytym nadlewem, dla zakresu temperatury powierzchni nadlewu 1000-1500°C. Na podstawie wykonanych badań stwierdzono, iż współczynnik emisji ciepła z nieizolowanej powierzchni nadlewu do otoczenia zmienia swą wartość w badanym zakresie temperatury o około 50%, tj. od około 0.26 - 0.30 dla metalu w stanie ciekłym do około 0.42 - 0.46 dla metalu w stanie stałym, w pobliżu temperatury solidus. Powyższy szeroki zakres zmian emisyjności powinien być uwzględniany w budowanym modelach symulacji procesu krzepnięcia i projektowania systemów zasilania krzepnących odlewów.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.