Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  solid-state reaction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A series of red-emitting phosphors InNbO4:Eu3+,Bi3+ was prepared by a high temperature solid-state reaction. The structure, size distribution and luminescence properties of the phosphors were respectively characterized by X-ray diffraction (XRD), laser particle size and molecular fluorescence spectrometer. The XRD results indicate that the phase-pure samples have been obtained and the crystal structure of the host has not changed under the Eu3+ and Bi3+ co-doping. The test of size distribution shows that the phosphor has a normal size distribution. The excitation spectra illustrate that the dominant sharp peaks are located at 394 nm (7F0→5L6) and 466 nm (7F0→5D2). Meanwhile, the emission spectra reveal that the phosphors excited by the wavelength of 394 nm or 466 nm have an intense red-emission line at 612 nm owing to the 5D0→(7F2 transition of Eu3+. Bi3+ doping has not changed the peak positions except the photoluminescence intensity. The emission intensity is related to Bi3+ concentration, and it is up to the maximum when the Bi3+-doping concentration is 4 mol%. Due to good photoluminescence properties of the phosphor, the InNbO4:0.04Eu3+,0.04Bi3+ may be used as a red component for white light-emitting diodes.
EN
InNb1-xPxO4: Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV) 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of D-5(0) -> F-7(2). The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching. With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.O-4(4):0.04Eu(3+) phosphor may be a potential candidate as a red component for white light emitting-diodes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.