Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  solid volume fraction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper describes a one-dimensional code developed for analyzing the two-phase deflagration to detonation transition (DDT) phenomenon in granular high-energy solid propellants. The deflagration to detonation transition model was established based on a one-dimensional two-phase reactive flow model involving basic flow conservation equations and constitutive relations. The whole system was solved using a high resolution 5th-order WENO (Weighted Essentially Non-Oscillatory) scheme for spatial discretization, coupled with a 3rd-order TVD Runge-Kutta method for time discretization, to improve the accuracy and prevent excessive dispersion. An inert two-phase shock tube problem was carried out to access the developed code. The DDT process of high-energy solid propellants was simulated and the parameters of detonation pressure, run distance to detonation and time to detonation were calculated. The results show that for a solid propellant bed with solid volume fraction 0.65, the run distance to detonation was about 120 mm, the detonation induced time was 28 μs, and the detonation pressure was 18 GPa. In addition, the effects of solid volume fraction (φs) and pressure exponent (n) on the deflagration to detonation transition were also investigated. The numerical results for the DDT phenomenon are in good agreement with experimental results available in the literature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.