Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  solar thermal
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Concentrated solar power (CSP) is a promising form of renewable energy that harnesses the immense power of the sun to generate electricity. It employs various mechanisms to concentrate sunlight onto a receiver, thereby producing high-temperature heat. This heat can be stored and converted into electricity through conventional steam turbines or for other heating applications. One of CSP’s key advantages is its ability to store thermal energy for use during cloudy periods or at night, enhancing the reliability and dispatchability of solar power. This review article offers a comprehensive introduction to CSP including its principles, technological advancements, comparison analysis, and its potential to play a crucial role in the transition to a sustainable toward carbon neutral energy future. Various statistical charts on the operational CSP plants around the world have been presented in this review and showed that there is a notable interest in the MENA region for considering this technology in their energy mix. Jordan is part of the MENA region, therefore, possible deployment of this technology in the kingdom of Jordan has been assessed as well by studying the solar radiation measurements in the southern location of the country. Analysis has concluded that Ma’an governorate has the highest solar irradiance characteristics in the country and has the lowest values of diffuse irradiance. The annual average daily global irradiance is between 3.7 kWh/m2 in January to 8.5 kWh/m2 in June, equivalent to annual global radiation of more than 2200 kWh/m2. The results have been validated using Global Solar Atlas and ener MENA high precision meteorological station installed in Ma’an. The costs and current challenges faced by this technology will also be discussed.
EN
The current task explores automatic generation control knowledge under old-style circumstances for a triple-arena scheme. Sources in area-1 are thermal-solar thermal (ST); thermal-geothermal power plant (GPP) in area-2 and thermal-hydro in area-3. An original endeavour has been set out to execute a new performance index named hybrid peak area integral squared error (HPA-ISE) and two-stage controller with amalgamation of proportional-integral and fractional order proportional-derivative, hence named as PI(FOPD). The performance of PI(FOPD) has been compared with varied controllers like proportional-integral (PI), proportional-integral-derivative (PID). Various investigation express excellency of PI(FOPD) controller over other controller from outlook regarding lessened level of peak anomalies and time duration for settling. Thus, PI(FOPD) controller’s excellent performance is stated when comparison is undergone for a three-area basic thermal system. The above said controller’s gains and related parameters are developed by the aid of Artificial Rabbit Optimization (ARO). Also, studies with HPA-ISE enhances system dynamics over ISE. Moreover, a study on various area capacity ratios (ACR) suggests that high ACR shows better dynamics. The basic thermal system is united with renewable sources ST in area-1 also GPP in area-2. Also, hydro unit is installed in area-3. The performance of this new combination of system is compared with the basic thermal system using PI(FOPD) controller. It is detected that dynamic presentation of new system is improved. Action in existence of redox flow battery is also examined which provides with noteworthy outcome. PI(FOPD) parameters values at nominal condition are appropriate for higher value of disturbance without need for optimization.
EN
The boiler is an enclosed vessel that transfers the energy from fuel combustion or electricity into hot water or steam. Then, this hot water or pressurized steam is used for transferring the heat to a certain heat process. Usually, the required hot water or steam keeps on varying throughout the day which also may be implied on the daily or monthly load. Therefore, several configurations of connecting the boiler into the solar heating system ensure the temperature of the final output. The boiler can be connected in series or parallel to improve the efficiency of the overall process as well as to reduce the running costs. This paper presents a simulation study of a solar heating system for industrial processes. Two flow-heater system configurations are designed for covering the heat demand of a pasteurising factory existing in Budapest, Hungary. The configuration “A” consists of a solar heating system for hot water preparation using in series flow heater configuration. While configuration “B” consists of the same solar system but with a parallel flow heater configuration. These system configurations are modelled using T*sol software for evaluating the system performance under the Hungarian climate from five different aspects: required collector area, glycol ratio, volume flow rate, relative tank capacity, and tank height-to-diameter ratio. According to the optimum design parameters, in series configuration is better than parallel by 3.14% at 45 m² collector area, 0.45% at 25% glycol ratio, 0.42% at 50 l/h · m² volume flow rate, 2.05% at 50 l/m² relative tank capacity, and 0.42% at 1.8 tank height-to-diameter ratio respectively. The results show that in series configuration is better in terms of solar fractions than parallel configuration from all five aspects.
EN
In Poland an increase in the of number solar thermal collectors is observed in household applications. For economic and ecological profitability the creation of a solar thermal installation design in a proper manner is essential. In order to determine solar installations size, software calculating future solar heat gains is used. SHW software is an examples of such software. The aim of this work was to compare the simulation results with the real results of the solar installation operation. The comparison was performed by an example of a single-family house with flat plate collector installations located in south-east Poland. This installation supports domestic hot water preparation in a house occupied by four people (in two-year period of analyses). The additional heat source in this building is a gas boiler. Solar fraction parameter values were chosen for this comparison. Solar fraction is calculated as a ratio of solar heat gains used in the domestic hot water preparation process to the heat desired for domestic hot water preparation. The real results of Solar Fraction turned out to be higher than the simulation results from May to August (there were many days with Solar Fraction = 1). A difference of 20–50 percentage points was observed (Solar Fraction). Apart from this period no special differences were observed. Additionally analyses of differences between solar heat gains calculated by Get Solar simulation software with real values (for analyzed building) was performed. This simulation analysis was done before process of building installations.
PL
W Polsce obserwuje się wzrost liczby kolektorów słonecznych w zastosowaniach domowych. Dla opłacalności ekonomicznej i ekologicznej ważne jest właściwe zaprojektowanie instalacji solarnej. W celu ustalenia wielkości instalacji słonecznych stosuje się oprogramowanie do obliczania przyszłych zysków ciepła słonecznego. Program SHW jest jednym z przykładów takiego oprogramowania.Celem pracy było porównanie wyników symulacji z rzeczywistymi wynikami pracy instalacji solarnej. Porównanie przeprowadzono na przykładzie domu jednorodzinnego (z instalacją płaskich kolektorów słonecznych) położonego w południowo-wschodniej Polsce. Instalacja solarna obsługuje przygotowywanie ciepłej wody użytkowej w domu zamieszkanym przez cztery osoby (w dwuletnim okresie analizy). Dodatkowym źródłem ciepła w tym budynku jest kocioł gazowy. Do porównania wybrano wartości parametru Solar Fraction. Solar Fraction jest obliczany jako stosunek zysków ciepła słonecznego wykorzystywanych w procesie przygotowania ciepłej wody użytkowej do ciepła pożądanego do przygotowania ciepłej wody użytkowej. Rzeczywiste wyniki frakcji słonecznej (w skali miesięcznej) okazały się wyższe od wyników symulacji w okresie od maja do sierpnia (było wiele dni z Solar Fraction = 1). Maksymalna różnica wyniosła 20–50 punktów procentowych (Solar Fraction). Oprócz tego okresu nie zaobserwowano żadnych szczególnych różnic. Dodatkowo przeprowadzono analizę osiągniętych różnic między zyskami ciepła słonecznego obliczonymi przez oprogramowanie symulacyjne Get Solar a wartościami rzeczywistymi (dla analizowanego budynku). Symulacja ta została wykonana przed procesem budowy instalacji.
EN
In this work, the application of hybrid solar modules that combine photovoltaic panels and solar thermal collectors coupled with a low-temperature thermal cycle such as the Organic Rankine Cycle is discussed, their main purpose being an increase in the total electric power production per available area. This work will study the thermal and electrical power production efficiency of the hybrid system, the increase in the PV module electric conversion efficiency due to their cooling through heat transfer to the thermal cycle and the total exergetic efficiency of the system. A simplified simulation of the system in steady state conditions based on a thermal efficiency model will be performed with the aid of the EES (Engineering Equation Solver) software using climate data from Campinas, São Paulo, Brazil. The study shows that while the PV/T+ORC system does fulfill the purpose of increasing the electrical power generation both from the generator coupled to the thermal cycle and from the increase in the PV module efficiency due to its cooling. Thus, there is an increase the overall exergy efficiency of the system compared to uncoupled PV/T collectors.
PL
W pracy omówiono zastosowanie hybrydowych modułów słonecznych łączących panele fotowoltaiczne z kolektorami słonecznymi w połączeniu z niskotemperaturowym cyklem termicznym, takim jak cykl organiczny Rankine'a, którego głównym celem jest zwiększenie całkowitej produkcji energii elektrycznej. W pracy zbadano wydajność produkcji energii cieplnej i elektrycznej w systemie hybrydowym, wzrost sprawności konwersji energii modułu fotowoltaicznego ze względu na ich chłodzenie poprzez przeniesienie ciepła do cyklu termicznego i całkowitą efektywność energetyczną układu. Uproszczona symulacja systemu w warunkach stanu ustalonego w oparciu o model sprawności cieplnej została przeprowadzona za pomocą oprogramowania EES (Engineering Equation Solver) wykorzystującego dane klimatyczne z Campinas, São Paulo, Brazylia. Badania wykazały, że system PV/T + ORC spełnia cel zwiększenia wytwarzania energii elektrycznej zarówno z generatora połączonego z cyklem termicznym, jak i ze wzrostu sprawności modułu PV ze względu na jego chłodzenie. W ten sposób zwiększa się ogólna efektywność egzergii systemu w porównaniu z niezwiązanymi kolektorami PV/T.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.