Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  solar system bodies
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The most significant relativistic effects (the geodetic precession and the geodetic nutation, which consist of the effect of the geodetic rotation) in the rotation of Jupiter's inner satellites were investigated in this research. The calculations of the most essential secular and periodic terms of the geodetic rotation were carried out by the method for studying any bodies of the solar system with long-time ephemeris. As a result, for these Jupiter’s satellites, these terms of their geodetic rotation were first determined in the rotational elements with respect to the International Celestial Reference Frame (ICRF) equator and the equinox of the J2000.0 and in the Euler angles relative to their proper coordinate systems. The study shows that in the solar system there are objects with significant geodetic rotation, due primarily to their proximity to the central body, and not to its mass.
EN
This investigation is continuation of our studies of the geodetic (relativistic) rotation of the Solar system bodies (Eroshkin and Pashkevich, 2007) and (Eroshkin and Pashkevich, 2009). For each body (the Moon, the Sun, the major planets and Pluto) the files of the values of the components of the angular velocity of the geodetic rotation are constructed over the time span from AD1000 to AD3000 with one day spacing, by using DE422/LE422 ephemeris (Folkner, 2011), with respect to the proper coordinate systems of the bodies (Seidelmann et al., 2005). For the first time in the perturbing terms of the physical librations for the Moon and in Euler angles for other bodies of the Solar system the most essential terms of the geodetic rotation are found by means of the least squares method and spectral analysis methods.
3
Content available remote Geodetic rotation of the solar system bodies
EN
The problem of the geodetic (relativistic) rotation of the major planets, the Moon, and the Sun is studied by using DE404/LE404 ephemeris. For each body the files of the ecliptical components of the vectors of the angular velocity of the geodetic rotation are determined over the time span from AD1000 to AD3000 with one day spacing. The most essential terms of the geodetic rotation are found by means of the least squares method and spectral analysis methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.