Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  solar burst
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The Evolution of Unstable 'Beta-Gamma' Magnetic Fields of Active Region AR 2222
EN
This event allows us to investigate how plasma–magnetic field interactions in the solar corona can produce suprathermal electron populations over periods from tens of minutes to several hours, and the interactions of wave-particle and wave-wave lead to characteristic fine structures of the emission. An intense and broad solar radio burst type IV was recorded by CALLISTO spectrometer from 240360 MHz. Using data from a the KRIM observatory, we aim to provide a comprehensive description of the synopsis formation and dynamics of a a single solar burst type IV event due to active region AR2222. For five minutes, the event exhibited strong pulsations on various time scales and “broad patterns” with a formation of a group type III solar burst. AR 2222 remained the most active region, producing a number of minor C-Class solar flares. The speed of the solar wind also exceeds 370.8 km/second with 10.2 g/cm3 density of proton in the solar corona. The radio flux also shows 171 SFU. Besides, there are 3 active regions, AR2217, AR2219 and AR2222 potentially pose a threat for Mclass solar flares. Active region AR2222 have unstable 'beta-gamma' magnetic fields that harbor energy for M-class flares. As a conclusion, we believed that Sun’s activities more active in order to achieve solar maximum cycle at the end of 2014.
EN
Recent data of a complex solar radio burst type II is analyzed and reviewed. The monitoring of solar radio burst was done by using the Compact Astronomical Low cost, Low frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) from BLEIN 7 meter dish telescope at ETH, Zurich in frequency range of 25 until 1000 MHz. During the inspection of the X-ray spectrum, we observed that the C3-category flare was caused by a filament of magnetism, which rose up and erupted between 0400 and 0600 UT. This occurred three hours before the signature of solar radio burst type II. There are some of the material in the filament fell back to the sun, causing a flash of X-rays where it hit the Sun surface. This is a Hydra Flare which occurred without sunspots. On the basis of these results, we suggest that a single shock in the leading edge of the CME could be the source of the multiple type II bursts and support the notion that the CME nose and the CME-streamer interaction are the two main mechanisms able to generate the bursts.
EN
The solar flare and Coronal Mass Ejections (CMEs) are well known as one of the most massive eruptions which potentially create major disturbances in the interplanetary medium and initiate severe magnetic storms when they collide with the Earth‟s magnetosphere. However, how far the solar flare can contribute to the formation of the CMEs is still not easy to be understood. These phenomena are associated with II and III burst it also divided by sub-type of burst depending on the physical characteristics and different mechanisms. In this work, we used a Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy in Transportable Observatories (CALLISTO) system. The aim of the present study is to reveal dynamical properties of solar burst type II and III due to several mechanisms. Most of the cases of both solar radio bursts can be found in the range less that 400 MHz. Based on solar flare monitoring within 24 hours, the CMEs that has the potential to explode will dominantly be a class of M1 solar flare. Overall, the tendencies of SRBT III burst form the solar radio burst type III at 187 MHz to 449 MHz. Based on solar observations, it is evident that the explosive, short time-scale energy release during flares and the long term, gradual energy release expressed by CMEs can be reasonably understood only if both processes are taken as common and probably not independent signatures of a destabilization of pre-existing coronal magnetic field structures. The configurations of several active regions can be sourced regions of CMEs formation. The study of the formation, acceleration and propagation of CMEs requires advanced and powerful observational tools in different spectral ranges as many „stages‟ as possible between the photosphere of the Sun and magnetosphere of the Sun and magnetosphere of the Earth. In conclusion, this range is a current regime of solar radio bursts during CMEs events.
EN
Observations of type II and III solar bursts indicate that while type III bursts may appear at any altitude, from the very low corona into interplanetary space, type II solar bursts do not act the same way. This work focuses on recent observations in the radio region on the low frequency region from 45 MHz to 870 MHz. Our analysis employed the accuracy of the daily solar burst measurements of e-CALLISTO network. It was found that solar burst type II explode quite minimum with 1-2 events from 2006 - 2010. However, the data 2011 for solar burst type II increases drastically with 16 events has been recorded. The occurrences of Coronal Mass Ejections (CMEs) events are also increasing up to four times in 2011. Most of the both events can be observed in the range of 150 MHz till 500 MHz. Overall, we can say that the range of photon energy for solar burst type III is between 7.737 x 10-7 eV to 1.569 x 10-6 eV. In the case of solar burst type II, the distribution of energy is much smaller with 1.596 x 10-6 eV to 6.906 x 10-6 eV. Detailed investigation of solar burst will concern the 2011 data seem to show a significant trend for both types. We showed that the increasing of both solar burst events via years implies directing an increasing of solar activities including sunspot number, solar flare and Coronal Mass Ejections (CMEs) events. It is expected that both types will increase gradually in the beginning of 2014.
EN
The eruption mechanism of solar flares and type III are currently an extremely active area of research, especially during the solar cycle is towards maximum. In this case, the total energy of solar burst type III is of the order of solar flare with the explosion of the energy can up to 1015 ergs. The solar flare event is one of the most spectacular explosions that still be on-going study in the solar physics world. This event occurred at 2:000 UT on 15th April 2012 is due to the explosion of the magnetic energy in from the chromosphere and converted into the heating, mass motion and particle acceleration which can be detected by solar radio burst type III. In this work, we will highlight our first light detection of very tiny solar radio burst type III, which has been observed at the National Space Centre, Banting, Selangor detected by the Compound Low Cost Low Frequency Transportable Observatories (CALLISTO) system at 5:53:23. The region of the data is from 150 − 400 MHz in radio region. This burst is drifted from 150 MHz till 260 MHz. It represents a total energy of 6.2035 × 10-7 eV − 1.0753 × 10-6 eV. This fast drift burst is a continuity of the acceleration of the particles which is intermittent, and can be observed since the explosion of the solar flare. Although the burst is very tiny, it is still significant because this burst is the first detection of a single type III burst from our site. Still, the acceleration of the particles can be detected from Earth in the radio region within 3 hours period of observation at the post stage of solar flare.
EN
A detailed investigation of an inverted type U solar burst in meter region and their associated the solar flare and Coronal Mass Ejections (CMEs) has been reported. Solar type U burst has been observed at the National Space Centre, Banting, Selangor detected by the Compound Low Cost Low Frequency Transportable Observatories (CALLISTO) system in the 150 MHz till 400 MHz at the low frequency band. An inverted U type is occurring on 9th March 2012 between 4:00 UT to 4:15 UT within 1 minute (4:12 − 4:13) UT. From the dynamic spectra of CALLISTO, we have identified metric type U burst with maximum emission near the frequency 385MHz. In specific, the continuum type III burst will soon structure this burst due to our observations. Other types such as type II and IV are only appearing only after type U burst is ejected and appear at the same point of the solar flare event. Since the U burst activity coincides with the peak of the hard X-ray flare at 4:12UT in AR1429, we classified that the event is associated with the injection of the high energetic particles. In conclusion, it is confirmed that an inverted type U burst is initiated after a complex and a group solar radio burst type III.
EN
The main feature of solar radio type II, III and IV burst is outlined. In this event there are three combinations of bursts that related to the solar flare phenomenon on 6th July 2012. This event is one of good example to observe how far the influence of type II burst could impact the formation of type IV burst and III solar bursts. At first stage, it was observed that a sub-type of H burst form within 2 minutes before type IV solar burst form. The type IV burst is due to the eruption of active region AR 1515 with a fine structure (FS). We used a Blein CALLISTO data in this case. Further analysis also showed that the total energy of the burst are in the range of 4.875 × 10-25 J to 8.48 × 10-25 J and plasma frequency is equal to 1.24 × 104 Hz. Therefore, we could say that in this case, before the solar burst type III occurred, the ejection of CMEs already ejected.
EN
Using data from a BLEIN Callisto site, we aim to provide a comprehensive description of the synopsis formation and dynamics of a a single solar burst type III and IV event due to active region AR1890. This eruption has started since 14:15 UT with a formation of type III solar burst. To investigate the importance of the role of type III solar burst can potentially form a type IV solar burst, the literature review of both bursts is outlined in detailed. The orientation and position of AR1890 make the explosion of a class C-solar flare is not directly to the Earth. Nevertheless, it is clear that the interactions of others sunspots such as AR1893,AR1895,AR1896, AR1897 and AR1898 should be studied in detail to understand what makes the type III burst formed before the type IV solar burst.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.