Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sol-gel coating
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The basic factor limiting the use of glasses is their unsatisfactory mechanical strength. The improvement of the mechanical strength of glasses is usually obtained by applying their respective thin surface layers. The object of the research was glass coated with zirconium oxide. For the application of zirconium oxide layer, dip-coating method was used. The resulting materials were subjected to detailed examination of the microstructure (SEM), and mechanical tests (Vickers hardness and modulus of elasticity). In order to evaluate the optical characteristics, the tests were performed by UV/VIS. The thickness of the overlying layers were determined using the method of ellipsometry. The study showed that the obtained sol-gel layer of zirconium oxide (IV) on glasses influence the improvement of the mechanical properties. It has been shown that the applied layers have high adhesion to the substrate.
EN
A serious drawback of the commonly used textiles of polyester/cotton fibres blends (PET/CO), especially those containing worse cotton brands, is their great susceptibility to form pilling, which adversely affects their performance durability and aesthetic values. Among the many methods of preventing this phenomenon, the thin-coating finishing performed by sol-gel methods provides interesting possibilities in this field. By a proper selection of precursors and synthesis method as well as the deposition of sols, it is possible to form xerogel coats on the fibre surface characterised by considerable hardness and abrasion resistance, thus reducing the formation of pilling, without any deterioration in the aesthetic values of textiles. Moreover, these coatings are strongly combined with the fibre surface and are resistant to the conditions of use and care, including multiple washing processes. The thin-coat finishing of this type also increases the abrasion resistance of textiles with a dominating content of polyester fibres, and thus it positively influences the performance value of textile fabrics. This paper presents the test results of using the hybrid modified SiO2/Al2O3 sol developed, synthesised with the use of two precursors: (3-glycidoxypropyl) trimethoxysilane (GPTMS) and aluminium isopropoxide (ALIPO), and the conditions of its application to the thin-coat finishing of PET/CO (67:33) woven fabrics were selected to increase their abrasion resistance and prevent the formation of pilling. Consequently, the fabric susceptibility to form pilling was practically completely eliminated (assessment at level 5 according to the Martindale test), and the fabric abrasion resistance was increased by 38%, with the effects obtained being resistant to prolonged laundering.
PL
Istotną wadą tekstyliów z mieszanek włókien poliestrowych i bawełnianych jest ich duża skłonność do tworzenia pillingu, co negatywnie wpływa na trwałość użytkową oraz cechy estetyczne wyrobów. Wśród wielu sposobów przeciwdziałania tej skłonności, duże możliwości stwarza wykończenia nanopowłokowe metodą zol-żel. W rezultacie prowadzonych badań ustalono, że w wyniku odpowiedniego doboru prekursorów i addytywów oraz opracowanych metod syntezy, a następnie włókienniczej aplikacji zoli, można wytwarzać na powierzchniach włókien cienkie powłoki kserożelowe, które nie powodując pogorszenia cech estetycznych tekstyliów, jednocześnie istotnie zwiększają odporność tkanin na ścieranie, a więc i mechacenie, a w rezultacie na tworzenie pillingu. Powłoki takie są silnie związane z powierzchniami włókien i odporne na warunki użytkowania i konserwacji wyrobów, w tym wielokrotne prani
EN
Despite of applying modern biomaterials during constructing long term orthopaedic implants, in clinical practice there are still present wide range of complications, particularly concerning matter of implant - tissue interactions. Since interaction between implant and living tissue depends mainly on biomaterial surface features, we decided to modify orthopaedic alloys to improve their biological properties. The object of this experiment was in vitro evaluation of selected biological properties, particularly cytotoxicity of titanium alloy and 316L stainless steel substrates coated with SiO2 or TiO2 thin films. The coatings were synthesized by sol-gel method. Each samples was placed into mouse fibroblast culture. The cultures in presence of tested materials were maintained for three days. We found no distinct toxic effect of tested biomaterials. We noticed increase of fibroblast proliferation in cultures with uncoated titanium and particularly SiO2 coated titanium plates.
EN
The sol-gel-derived materials can be exploited for the number of applications, including biomaterials and measuring techniques. One of the most important applications involves production of sol-gel coatings. In this study, silica based sol-gel materials were prepared by way of acid hydrolysis with alcohol as a solvent. Tetraethylorthosilicate (TEOS) was used as a precursor. Different samples were tested; with molar ratios R = 5, 10, 15, 20, 32 and 50, denoting the number of ethanol moles to the number of TEOS moles. The viscosity and surface tension of liquid hydrolizates were measured depending on the ethanol content in sol-gel. The thickness of a coating layer was determined, as well. The refractive index was measured 10 days long, up to the point of gelation. It was demonstrated that viscosity, surface tension and refractive index are lower for higher R value (for higher alcohol content), whereas the sol-gel layers produced with higher R values are thicker than these ones produced with lower alcohol content. It is also demonstrated that R value influences the performance of fiberoptic sol-gel applicators for interstitial laser therapy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.