This study investigates soil–steel composite structures, emphasizing the role of stiffening ribs and geotextile reinforcement through comprehensive numerical modeling. This study presents a two-dimensional finite element analysis (FEA) and compares the influence of stiffening rib and geotextile on the ultimate bearing capacity of the soil–steel composite structures. The results of this study demonstrate a significant enhancement in load capacity. Specifically, a notable 47% improvement was observed with a stiffening rib, and a 26% increase was noted with the use of a single layer of geotextile. Under peak load, the vertical displacement at the crown exceeds the permissible standard for all models except for one model, while bending moments reach their limits, marking a failure mode of composite system considered. Structures with stiffened ribs reach their load capacity due to the creation of a plastic hinge around the shoulder and haunch of the shell. On the other hand, in structures without stiffening ribs, the crown and haunch section of the shell becomes fully plastic under peak load. The maximum axial thrust is shown in geotextile-reinforced structure, reaching 78% of the shell maximum capacity due to compression. Eventually, stiffening rib substantially improves overall load-bearing capacity of the soil–steel composite structures, and geotextile placement in the upper part of the backfill reduces shell deflection due to bending.
The paper presents the issue of estimating the geometry changes during construction of soil-steel composite bridges. Author presents the influence of the backfilling process on the geometry of the profile and the means to increase the upward deflection with the use of mechanical tensioning. Also the relations between horizontal and vertical deflections depending on the level of backfill are presented. Based on author’s observations, the paper will address the way to calculate the crown point upward deflection due to backfilling. Paper also elaborates on the consequences of inappropriate upward deflection during backfilling at the service stage of the corrugated structures.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.