Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  soft-sediment deformation structures
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The wide variety of soft-sediment deformation structures (SSDS) developed within deposits of the same age may hinder the interpretation of their origin. Some types of SSDS may appear similar though have different trigger mechanisms, while others may result from a specific mechanism. Furthermore, the development of particular SSDS may be influenced by several synchronous or semi-synchronous factors. This study deals with the recognition of SSDS trigger mechanisms with respect to lithological and deformational features of the deposits concerned. Turbidite deposits of late Neogene age in the Hadjret El Gat area (Tafna Basin) contain different types of SSDS associated with (1) slope processes (e.g., slump folds) and induced overburden pressure, coupled with broken beds and overloading structures, and (2) liquefaction and fluidisation phenomena, leading to the development of load structures, ball-and-pillow structures, water-escape structures and syndepositional faults. These two mechanisms of SSDS formation in the study area are thought to result from seismically-induced triggers. Recognition of a vertically-repeated, sandwich-like arrangement of deformed and undeformed layers along with the SSDS features ("trapped" within beds) suggests that these internally-deformed beds are seismites, the first recognized in the Tafna Basin of NW Algeria. Large earthquakes may trigger seismic waves energetic enough to deform strata and induce the development of SSDS. This hypothesis is supported here by tectonic evidence, given deposition of the Tafna Basin strata in the convergence zone between Africa and Eurasia, active since the late Neogene.
EN
Soft-sediment deformation structures play an important role in interpreting regional tectonics and basin evolution during slumping events. The Satpura Basin is interpreted as pull-apart with a monoclinal northerly palaeoslope throughout its evolution. The basin formed as a result of sinistral strike-slip faulting, induced by the ENE–WSW-trending Son-Narmada South fault in the north and the Tapti North fault in the south. We have analysed the slump folds within the basalmost Talchir Formation and related these to regional tectonics and palaeoslope changes in the Satpura Basin. The glaciofluvial strata of the Talchir Formation, exposed in the southern part of the Satpura Basin, record intricacies of folds created during slumping. Several fold styles can be distinguished, within alternations of competent sandstone and incompetent shale layers, some of which indicate buckling. Upright folds, resulting from pure shear, underwent rotation of their axial planes and fold axes during simple shear-dominated progressive deformation when the slump moved downslope. The soft-sediment deformation structures that we have studied show refolding patterns that closely resemble comparable folds known from lithified rocks. These layers with refolded structures are overlain by undeformed sediments, which proves that they are the product of a single ongoing slumping process, rather than of successive deformation events. Our analysis of their fold axes and axial planes, together with fold vergences and thrust directions within the slumps, suggests a mean slumping direction towards the southwest. Analyses of slump folds and their relationship with regional tectonics have allowed us to reinterpret basin evolution history. The southwesterly trending palaeoslope of the basin suggest that the slope of the basin was not uniform throughout its evolution. At the opening, the oblique slip fault, which trended NE–SW, generated due to movement along the ENE–WSW basin bounding faults, was more active and triggered slumping event within the Talchir deposits in the basin. With progressive overlapping of the basin-bounding faults, the Satpura Basin gradually tilted towards the north.
EN
No numerical model has thus far addressed seismites, even though seismites are frequently used for the conditions which have to be fulfilled for the development of seismites have also been estimated only empirically. The present contribution is a first attempt to model numerically the soft-sediment deformation structures caused by the passage of S-waves through near-surface sedimentary layers. The simulations are based on the so-reconstruction of seismic events in the geological past. This is the more remarkable since the boundary called pressure tube model and the iSALE2D program. We modelled a seismic S-wave with six different vertical velocities, ranging from 1.6 to 2.6 m · s-1, passing through sediments with different densities and porosities in a sedimentary succession from the surface down to a depth of 10 m. The modelled soft-sediment deformation structures (load casts, flame structures, injection structures and sedimentary volcanoes) show similar geometries and sizes as those known from laboratory experiments and field studies. The geometry, size and type of these structures depend on the sediment properties and on the initial pressure used as a trigger mechanism, rather than on S-wave velocity. In contrast, the depth of the seismites appears to depend strongly on the S-wave velocity.
EN
Loading processes and the resulting load structures induced by processes related to periglacial conditions are compared to those induced by seismic shocks. The load structures themselves are relatively easily recognizable but the responsible trigger mechanism is, though depending on the geological context, commonly difficult to establish. Load structures like load casts, pseudonodules, ball-and-pillow structures and flame structures are commonly ascribed to instable density gradients within sediments and to differential loading, but their formation always requires liquefaction. In glacigenic sediments, deformation structures have most commonly been ascribed to periglacial processes (as a type of cryoturbations), but it becomes ever more clear that glacigenic sediments can, particularly during ice-front fluctuations, be affected by faulting-related earthquakes (due to glacio-isostatic adjustment), and the thus triggered seismic shocks may result in deformations, including - most commonly - load structures. We inventory the evidence that may help to distinguish, on the basis of textural and structural features, load structures with a seismic origin from those that result from periglacial processes, taking into account that truly diagnostic criteria do not exist.
EN
Intrastratal flow is a process that is still poorly understood, rarely described and difficult to interpret in ancient rocks. Sediments in the Cretaceous lacustrine Gyeokpori Formation of southwestern South Korea contain some chaotically deformed sandstone layers with deformed mudstone clasts that are ascribed to this process. The interpretation is based on the fact that these layers cannot be explained as a result of subaqueous debris flows or mass transport, whereas the sedimentary context, including the presence of other soft-sediment deformation structures, indicates that intrastratal flow must have been physically possible. The sedimentary setting was a lake in which mainly siliciclastic rocks were deposited, with some interbedded volcaniclastics. The nearby volcanic activity caused seismic shocks that affected the unstable lake margins resulting in the dominance of gravity-flow deposits, but also in a high sedimentation rate that facilitated soft-sediment deformation partly caused by intrastratal flow. This must have happened fairly frequently during a probably limited time-span, as several layers showing traces of intrastratal flow are present within a succession of only <1 m thick. The combined data on the geological setting and our findings regarding the origin of the various soft-sediment deformation structures may help to recognize the traces left by intrastratal flow elsewhere in the geological record.
EN
The Miocene succession of crevasse-splay microdelta deposits in the Jóźwin IIB lignite opencast mine contains some aspects that are more interesting than Chomiak et al. (2019) seem to realize in their analysis of the sediments and the soft-sediment deformation structures that they contain. Moreover, the authors use a terminology that is not completely adequate, leaving some questions about the precise seismic process that induced the deformation structures. Both aspects are detailed in this comment. The interpretation of the deformation structures presented here may change the insight into the tectonic history of the graben, in which the study area is located.
EN
The fine-grained autochthonous sedimentation in the deep part of a Late Triassic lake was frequently interrupted by gravity-induced mass flows. Some of these mass flows were so rich in water that they must have represented slurries. This can be deduced from the soft-sediment deformation structures that abound in cores from these lacustrine deposits which constitute the Yanchang Fm., which is present in the Ordos Basin (central China). The flows and the resulting SSDS were probably triggered by earthquakes, volcanic eruptions, shear stress of gravity flows, and/or the sudden release of overburden-induced excess pore-fluid pressure. The tectonically active setting, the depositional slope and the high sedimentation rate facilitated the development of soft-sediment deformations, which consist mainly of load casts and associated structures such as pseudonodules and flame structures. Sediments with such deformations were occasionally eroded by slurries and became embedded in their deposits.
EN
Soft-sediment deformation structures (SSDS) are widespread in the upper part of the S. Mauro Formation (Cilento Group, Middle-Late Miocene). The succession is represented mainly by thick and very thick, massive, coarse-grained sandstones, deposited by rapid sedimentation of high-density turbidity currents. The most common SSDS are short pillars, dishes, sedimentary sills and convolutions. They occur mostly in the upper parts of sandstone beds. Vertical tubes of 4–5 cm in diameter and up to 50 cm long constitute the most striking structures. They begin in the middle part of sandstone beds, which are basically massive or contain faint dish structures. These tubes can bifurcate upwards and/ or pass into bedding-parallel veins or dikes. The vertical tubes sometimes form sand volcanoes on the then sedimentary surface. The SSDS are interpreted as the result of earthquake-triggered liquefaction and/or fluidisation of the turbidites that were affected by the seismic shocks. This implies that the deformed layers should be considered as seismites.
EN
Soft-sediment deformation structures formed by liquefaction and/or fluidisation of unconsolidated sediments due to seismic shocks are frequent in the Quaternary sandy, silty and clayey deposits of Lake Van. They are present in both marginal and deep lacustrine facies. Their morphology and interpreted genesis imply that they should be considered as fluid-escape structures (dish and pillar structures, flame structures and sand volcanoes), contorted structures (simple and complex convolutions and ball-and-pillow structures) and other structures (disturbed layers and slump structures). The most recently formed structures are related to the October 23rd, 2011 Van-Tabanlı (Mw 7.2) earthquake. The exist-ence of seismites at various stratigraphic levels in the lacustrine deposits is indicative of tectonic activity that frequently triggered earthquakes with magnitudes of 5 or more, affecting the Lake Van Basin.
EN
Numerous soft-sediment deformation structures occur within the Proterozoic Bhander Limestone of an intracratonic sag basin in a 750 m long section along the Thomas River, near Maihar, central India. Part of these deformation structures have most probably a non-seismic origin, but other structures are interpreted as resulting from earthquake-induced shocks. These seismic structures are concentrated in a 60 cm thick interval, which is interpreted as three stacked seismites. These three seismites are traceable over the entire length of the section. They divide the sedimentary succession in a lower part (including the seismites) deposited in a hypersaline lagoon, and an upper open-marine (shelf) part. Most of the soft-sediment deformations outside the seismite interval occur in a lagoonal intraclastic and muddy facies association. The SSDS within the seismite interval show a lateral continuity. They record simultaneous fluidisation and liquefaction. The bases of each of the three composing seismite bands are defined by small-scale shear folds, probably recording an earthquake and aftershocks. The presence of the three seismite bands at the boundary between the lagoonal and the overlying open-marine oolitic facies association suggests that the seismic event also triggered basin subsidence.
EN
Various millimetre-, centimetre- and metre-scale soft-sediment deformation structures (SSDS) have been identified in the Upper Ordovician and Lower-Middle Silurian from deep drilling cores in the Tarim Basin (NW China). These structures include liquefied-sand veins, liquefaction-induced breccias, boudinage-like structures, load and diapir- or flame-like structures, dish and mixed-layer structures, hydroplastic convolutions and seismic unconformities. The deformed layers are intercalated by undeformed layers of varying thicknesses that are petrologically and sedimentologically similar to the deformed layers. The SSDS developed in a shelf environment during the early Late Ordovician and formed initially under shear tensile stress conditions, as indicated by boudinage-like structures; during the latest Ordovician, SSDS formed under a compressional regime. The SSDS in the Lower-Middle Silurian consist mainly of mixed layers and sand veins; they formed in shoreline and tidal-flat settings with liquefaction features indicating an origin under a compressional stress regime. By Silurian times, the centre of tectonic activity had shifted to the south-eastern part of the basin. The SSDS occur at different depths in wells that are close to the syn-sedimentary Tazhong 1 Fault (TZ1F) and associated reversed-thrust secondary faults. Based on their characteristics, the inferred formation mechanism and the spatial association with faults, the SSDS are interpreted as seismites. The Tazhong 1 fault was a seismogenic fault during the later Ordovician, whereas the reversed-direction secondary faults became active in the Early-Middle Silurian. Multiple palaeo-earthquake records reflect pulses and cyclicity, which supports secondary tectonic activity within the main tectonic movement. The range of SSDS structures reflects different developments of tectonic activity with time for the various tectonic units of the centralbasin. The effects of the strong palaeo-earthquake activity coincide with uplift, fault activity and syn-tectonic sedimentation in the study area during the Late Ordovician to Middle Silurian.
EN
Evidence of earthquake-induced liquefaction features in the Acequión river valley, central western Argentina, is analysed. Well-preserved soft-sediment deformation structures are present in Late Pleistocene deposits; they include two large slumps and several sand dikes, convolutions, pseudonodules, faults, dish structures and diapirs in the basal part of a shallow-lacustrine succession in the El Acequión River area. The water-saturated state of these sediments favoured deformation. All structures were studied in a natural trench created as a result of erosion by a tributary of the Acequión River, called El Mono Creek. They form part of a large-scale slump system. Two slumps occur in the western portion of the trench and must have moved towards the ENE (70°), where the depocentre of the Boca del Acequión area is situated. Considering the spatial relationship with Quaternary faults, the slumps are interpreted as being due to a seismic event. The thickest dikes in the El Mono Creek trench occur in the eastern portion of the trench, indicating that the responsible earthquake was located to the east of the study area, probably at the Cerro Salinas fault system zone. The slumps, sand dikes and other soft-sediment deformation features are interpreted as having been triggered by earthquakes, thus providing a preliminary palaeoseismic record of the Cerro Salinas fault system and extending the record of moderate- to high-magnitude earthquakes in central western Argentina to the Late Pleistocene.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.