Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  soft ground improvement
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigated the compressibility of clay (Cc) for soft ground improvement and developed six optimized metaheuristic-based extreme learning machine (ELM) models (particle swarm optimization (PSO)-ELM, moth search optimization (MSO)-ELM, firefly optimization (FO)-ELM, cuckoo search optimization (CSO)-ELM, bees optimization (BO)-ELM, and ant colony optimization (ACO)-ELM) to predict Cc. A total of 739 laboratory tests were conducted to develop the models, and 517 datasets were used for training, while the remaining 222 samples were used for testing. The results showed that the accuracy of the developed models was improved by 3-5% compared to the original ELM model. The BO-ELM and MSO-ELM models were identified as the most effective models for predicting Cc, with accuracies ranging from 86.5% to 87%. The study suggests that the MSO-ELM model should be used if training time is critical. The developed models provide useful tools for predicting Cc, an essential parameter for soft ground improvement design, and can assist in the improvement of soft ground.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.