Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sodium carbonate
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
While high production of palm oil improves the community economy, it has the potential to damage the environment because it produces the waste containing quite a lot of residual oil. The wastewater generated by this production process flows into the cooling pond before it is further processed in aerobic and anaerobic ponds. The residual oil contained in the cooling pond can be collected and used, e.g. as raw material for biodiesel production. This research aimed to produce biodiesel by utilizing the oil extracted from cooling pond wastewater through the esterification method with a sulfonated carbon catalyst and a transesterification method with the Na2CO3 catalyst. The sulfonated carbon catalyst was made from the palm kernel shells as a solid waste of the palm oil plant. In order to study the optimum amount of catalyst usage, the catalyst ratio was varied, i.e. 8–16% for the esterification process and 1–3% for the transesterification process. The reuse performance of sulfonated carbon catalysts was varied three times. On the basis of the research results, sulfonated carbon catalysts were proven to be effective as heterogeneous catalysts in the esterification process because they can reduce acid level to below 5 mg KOH/g oil. The sulfonated carbon catalyst ratio of 12% was the optimum ratio which can reduce the acid level to 4.62 mg KOH/g oil. The reuse of sulfonated carbon can reduce the acid level to 6.9 mg KOH/g oil at the first reuse. In the transesterification process, the optimum ratio of the Na2CO3 catalyst of 3% was found. The biodiesel produced has met the biodiesel characteristics of National Indonesian Standard (SNI of 7182:2015) with the saponification number of 197.18 mg KOH/g oil, free glycerol of 0.09%, FAME content of 96.79%, and density of 886 kg/m3.
EN
The aims of the current study is to investigate the constraint of using caustic soda in water treatment and evaluating its performance in water softening, compared to other chemical group, including lime and sodium carbonate. Based on mass balance of reactants in the caustic softening process, a mathematical relation for expressing the constraint of using caustic soda in water softening was derived. To evaluate caustic soda performance in water softening and proving the derived relation as well, some experimental works on some water sources including well water and clarifier’s inlet water in two oil refineries were performed. The results showed that compared to lime- sodium carbonate, the caustic soda is the best choice for water softening, however, using caustic soda in water softening, while restrictive mathematical relation doesn’t verify the chemical characteristics of water, could lead to an extreme increase in alkalinity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.