Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sociotechnical system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: Socio-cyber-physical systems (SCPSs) are a type of cyber-physical systems with social concerns. Many SCPSs, such as smart homes, must be able to adapt to reach an optimal symbiosis with users and their contexts. The Systems Modeling Language (SysML) is frequently used to specify ordinary CPSs, whereas goal modeling is a requirements engineering approach used to describe and reason about social concerns. Objective: This paper aims to assess existing modeling techniques that support adaptation in SCPSs, and in particular those that integrate SysML with goal modeling. Method: A systematic literature review presents the main contributions of 52 English articles selected from five databases that use both SysML and goal models (17 techniques), SysML models only (11 techniques), or goal models only (8 techniques) for analysis and self-adaptation. Result: Existing techniques have provided increasingly better modeling support for adaptation in a SCPS context, but overall analysis support remains weak. The techniques that combine SysML and goal modeling offer interesting benefits by tracing goals to SysML (requirements) diagrams and influencing the generation of predefined adaptation strategies for expected contexts, but few target adaptation explicitly and most still suffer from a partial coverage of important goal modeling concepts and of traceability management issues.
2
EN
Aviation is the fastest growing but also the safest mode of transport. International aviation organizations give the highest priority to safety while creating aviation regulations. Therefore, a safety management system (SMS) has been created. Two approaches to assuring safety in aviation may be distinguished: Safety-I and Safety-II. Safety-I is the standard approach, focused on processing the information about malfunctioning features and system elements. On the other hand, Safety-II is a new approach to safety management, based on identifying the elements or functions of the system that work properly, which enables the system to confirm resilience to undesirable effects. One of the methods utilized for the Safety-II approach in order to study complex sociotechnical systems is the FRAM (functional resonance analysis method). The method is focused on analysing daily activities in various conditions in order to create a model of work performance. The models created based on the FRAM can be used for risk analysis, accident investigations and predicting possible future events affecting aviation safety. This method allows us to simulate system constraints and uncertain states. It can also be used as support for the air traffic safety management processes based on the Safety-II approach. The following article presents a developed FRAM model for the transfer of control over aircraft. This model constitutes an example of a coordination scheme limited to basic activities of air traffic control (ATC) services, providing a general framework for the construction and operation of the FRAM model.
EN
Previous research in the domain of maritime energy efficiency has mainly addressed concerns regarding individual experiences and organizational barriers. Reflection on the reciprocal human-technology relationship, interaction design and its impact on the practitioners’ learning and organizational decision-making process is rather scarce. Informed by focus group interviews, this paper describes the essence of practitioners’ activities and the nature of interaction design and proposed improved design for energy efficiency monitoring systems. Findings suggest knowledge sharing for a mutual understanding onboard ships is critical to energy efficiency. Learning can go beyond the embodiment of individual cognitive change but becomes a collective and collaborative achievement mediated by technology, which informs opportunities for interaction design. The design needs to consider the context in which knowledge mobilisation occurs and facilitate collaborative learning. With more intelligent systems introduced to the shipping industry, it is important to consider the impact of mediating technologies in management practices and mediating technologies can be integrated into a broader collaborative learning paradigm emerging between the ship and shore. This study highlights those social-cultural dimensions important to establishing a common ground between practitioners, management and advanced technologies.
4
Content available Human error in pilotage operations
EN
Pilotage operations require close interaction between human and machines. This complex sociotechnical system is necessary to safely and efficiently maneuver a vessel in constrained waters. A sociotechnical system consists of interdependent human- and technical variables that continuously must work together to be successful. This complexity is prone to errors, and statistics show that most these errors in the maritime domain are due to human components in the system (80 ? 85%). This explains the attention on research to reduce human errors. The current study deployed a systematic human error reduction and prediction approach (SHERPA) to shed light on error types and error remedies apparent in pilotage operations. Data was collected using interviews and observation. Hierarchical task analysis was performed and 55 tasks were analyzed using SHERPA. Findings suggests that communication and action omission errors are most prone to human errors in pilotage operations. Practical and theoretical implications of the results are discussed.
EN
The presented paper discusses the theoretical safety issues in complex sociotechnical systems. The traditional efforts to deal with the accidents/hazard events identification problem for complex systems seem to be insufficient, because they have tended to neglect or omitted the broader sociotechnical environment. Following this, a brief literature review in the area of sociotechnical systems modelling is provided. This gives the possibility to develop a formal model for hazard events (safety risk events) occurrence in man-machine-environment systems. The detailed analysis is provided for the performance of transportation systems.
PL
Prezentowany artykuł omawia teoretyczne kwestie bezpieczeństwa złożonych systemów antropotechnicznych. Tradycyjne podejścia w celu rozwiązania problemu właściwej identyfikacji zagrożeń wydają się być niewystarczające, ponieważ zwykle zaniedbują lub pomijają szerszy kontekst socjotechniczny otoczenia. W związku z tym krótko przedstawiono przegląd literatury w obszarze modelowania systemów antropotechnicznych. Pozwoliło to na opracowanie formalnego modelu matematycznego dla opisu zagrożeń występujących w układzie: człowiek-maszyna-otoczenie. Szczegółowa analiza została przedstawiona dla systemu transportowego.
EN
Sustainability research shall provide knowledge for action and is therefore deeply related with social and political issues such as regulation, behaviour, value-added chains, daily routines of users, consumption patterns, economic incentives, perceptions, attitudes and values. It needs cooperation with social actors in diagnosing sustainability deficits and challenges, in determining priorities for research and action, in defining indicators for measuring empirical developments and deciding on sustainability targets to go for, in setting the research agenda, in bringing knowledge and values of stakeholders and affected persons into the game and in looking for making sustainability strategies work in practice. This holds in particular for the transformation of the energy supply system to a more sustainable status. This transformation goes far beyond the substitution of traditional technolo-gy by new ones, because the energy system is not a purely technical system consisting of power plants, supply lines, storages etc. Rather it also includes a complex set of human actors such as users, regulators, decision-makers, planners, innovators, employees in the supply companies, citizens affected by side effects of energy technologies and infrastructures and also citizens in their role as the democratic sovereign. The main thesis of this paper is that the energy system is a sociotechnical system and that its transformation is a social transformation including technological change but going far beyond. The German Energiewende is used as an example. Energiewende means the (relatively) fast transformation of the German energy infrastructure to a more sustainable status based on a high share of renewables and strongly increased energy efficiency, including an accelerated nuclear phase-out after the Fukushima disaster.
PL
Badania na zrównoważonością powinny dostarczać wiedzy praktycznej, powiązanej z takimi zagadnieniami społecznymi i politycznymi, jak: regulacja, zachowanie, wartości dodane, codzienne zachowania, wzory konsumpcyjne, zachęty ekonomiczne, percepcja, postawy i wartości. W diagnozie wyzwań zrównoważoności niezbędne jest uwzględnienie perspektywy społecznej, pozwalającej określić priorytety dla badań i praktyki, zdefi-niować wskaźniki pozwalające zmierzyć rozwój i wyznaczyć cele, ku którym powinniśmy zmierzać. Należy ustalić program badań, uwzględnić wiedzę i wartości odnoszące się do interesariuszy i innych osób, które w tym procesie uczestniczą, a także poszukiwać strategii zrównoważoności, które sprawdzą się w praktyce. W szczególności odnosi się to do przekształcenia systemów zaopatrzenia w energię. Ta transformacja wykracza daleko poza zastąpienie tradycyjnych technologii nowymi, ponieważ system energetyczny nie ma charakteru jedynie czysto technicznego, złożonego z elektrowni, linii przesyłowych itp. Uwzględnić w nim należy także złożony zespół czynników ludzkich, takich jak użytkownicy, moderatorzy, decydenci, planiści, innowatorzy, pracownicy kompanii energetycznych i obywatele dotknięci efektami ubocznymi wynikającymi tak ze stosowania technologii energetycznych jak i rozwoju infrastruktury. Główna teza tej pracy jest następująca: system energetyczny jest systemem społeczno-technicznym i jego przekształcenia zachodzą na płaszczyźnie społecznej z uwzględnieniem zmian technologicznych, wykraczając jednak daleko poza nie. Niemieckie Energiewende może służyć za przykład. Energiewende oznacza (relatywnie) szybką transformację niemieckiego systemu energetycznego w kierunku zrównoważoności, co oznacza oparcie go na odnawialnych źródeł energii i silnie zwiększonej efektywności energetycznej, a także przyspieszonym po katastrofie w Fukushimie wycofywaniu się z rozwijania energetyki jądrowej.
EN
A sociotechnical system, which a company is, is an anthropocentric system. The article presents the notions related to elements which constitute a sociotechnical system and selected elements of that system's management. One of management tools, which can be used in this aspect, is a quality management system, which takes three subject matters into consideration: a customer, the highest board of managers and a personnel. These subjects contribute to formation of elements of a management system, because each group has definite requirements included in the system.
EN
This report extends a control systems or cybernetic model of behavior to the behavior of groups of many individuals - organizations and institutions - operating together with technology as complex sociotechnical (ST) systems. The premise is that the level of quality in performance of a complex ST system is predicated upon the degree to which its organizational design incorporates elements of a closed-loop behavioral control system: control goals and objectives, sensory receptors, sensory feedback, learning and memory, effectors, and sensory feedback control. From a control systems perspective, ergonomics is essential to effective organizational self-regulation. If working conditions are poorly designed, work performance and safety and quality outcomes cannot be closely controlled. Conversely, as shown by field evidence, good design promotes synergism between ergonomics, safety, and quality as a closed-loop consequence of effective employee and organizational self-control of system performance, safety, and quality.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.