Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  smooth particle hydrodynamics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian formula-based non-grid computational method for simulating fluid flows, solid deformation, and fluid structured systems. SPH is a method widely applied in many fields of science and engineering, especially in the field of materials science. It solves complex physical deformation and flow problems. This paper provides a basic overview of the application of the SPH method in metal processing. This is a very useful simulation method for reconstructing flow patterns, solidification, and predicting defects, limitations, or material destruction that occur during deformation. The main purpose of this review article is to give readers better understanding of the SPH method and show its strengths and weaknesses. Studying and promoting the advantages and overcoming the shortcomings of the SPH method will help making great strides in simulation modeling techniques. It can be effectively applied in training as well as for industrial purposes.
2
Content available remote A Particle-Based Method for Large-Scale Breaking Wave Simulation
EN
In this paper we address the problem of particle-based simulation of breaking waves. We present a new set of equations based on oceanographic research which allow us to deal with several types of breaking waves and multiple wave trains with full control over the governing parameters. Sprays are generated by explicitly computing sub-particle systems depending on the local motion caused by plunging. In order to reduce computations in non-significant areas, we also describe a simple and efficient multiresolution scheme based on the properties of our breaking wave model.
3
Content available Simulation of single grain cutting using SPH method
EN
So-called Engineered Grinding Tools (EGT) have been developed in order to satisfy the industry's demand for more efficient and cost-effective grinding tools, which differ from classic grinding tools by placing and brazing single abrasive grains in a predefined pattern onto the grinding tool body. Single grain cutting simulations form an important part towards an advanced understanding of the engineered grinding process. Cutting simulations with FE Methods encounter problems arising from large deformation and material separation. These can be overcome using meshless methods. In this work, a Smooth Particle Hydrodynamics (SPH) Method is used to model the single diamond grain cutting, which can be used as the basis process for physical simulation of the grinding process. As results the influence of the grain geometry, grain orientation and grain placement on the cutting forces, the burr generation and the chip removal rate are presented. It is shown that the cutting forces for a given grain geometry as well as the burr generation are heavily influenced by the orientation of the minor and the main cutting faces. Also cutting in material being work hardened by preceding grains, is simulated in order to be able to synthesize the grinding process from single grain cutting.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.