Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  smart manufacturing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The most recent tendencies and breakthroughs in digital technologies have made it possible to implement a new model of manufacturing. By es-tablishing a digital twin of the real environment and basing their judg-ments on that twin, digital systems are able to monitor, optimize, and man-age the processes that they are applied to. This concept is predicated on the creation of a “Digital Twin” for each individual production source that contributes to the overall manufacturing process. In spite of the fact that different real-world applications of digital twin may involve different tech-nical and operational specifics, a significant amount of work was put in over the past few years to recognize and express principal properties, in addition to the primary challenges involved in the practical implementa-tion of digital twins within related industries. The purpose of this article is to review and analyze the fundamental principles, ideas, and technological solutions that comprise the Digital Twin vision for production processes. As a result, the objective of this review is to provide a synopsis of the state-of-the-art regarding digital twin concepts and to analyze their most recent status in terms of their potential application and implementation.
EN
In this paper, a survey of the applications of digital twins (DTs) in removal and additive machining operations performed in smart manufacturing is presented. Some representative examples of virtual modelling in these manufacturing areas at different scales and complexity, including tools, fixtures, machines, equipment and manufacturing/production systems are presented and overviewed. Current experiences of research centres and machine tools companies, which develop and implement of DT technology in the context of control and optimization of machining processes performed on CNC machine tools, are highlighted. According to the author’s opinion this comprehensive survey would encourage to undertake this important manufacturing problem to implement new virtual tools for developing the I4.0 strategy.
PL
W artykule zaprezentowano przegląd zastosowań cyfrowego bliźniaka (DT) w skrawaniu i obróbce przyrostowej. Podano przykłady o różnym poziomie złożoności, z uwzględnieniem oprzyrządowania, maszyn, procesów i systemów wytwórczych/produkcyjnych. Omówiono doświadczenia ośrodków badawczych we wdrażaniu technologii DT w kontekście sterowania procesami obróbkowymi na obrabiarkach CNC i ich optymalizacji. Zdaniem autora artykuł powinien zachęcić do podjęcia problematyki wprowadzania nowych narzędzi informatycznych w rozwoju strategii Przemysłu 4.0.
EN
In this paper, some important achievements in the development of Industry 4.0 (I4.0) strategy based on the concept of advanced digitalization covering smart manufacturing activities using the Internet of Things (IoT) and corresponding digital twin (DT) solutions are highlighted. Some popular definitions and their practical meanings, modelling principles and possible applications are given. Some new trends and enabling technologies in smart (intelligent) manufacturing, i.e, complete digitalization of assets (units, machines, equipment, etc.), processes and systems based on the evolutionary development of DTs are discussed. This paper should encourage industry and academia to undertake this important problem more seriously, to implement its future potential in manufacturing and enhance the I4.0 strategy.
PL
W artykule dokonano przeglądu osiągnięć w zakresie rozwoju strategii Przemysłu 4.0, opartego na zaawansowanej cyfryzacji z wykorzystaniem internetu rzeczy (IoT) i cyfrowego bliźniaka (DT - digital twin). Podano definicje i zasady modelowania oraz przedstawiono możliwe obszary zastosowań cyfrowego bliźniaka. Omówiono trendy w inteligentnym wytwarzaniu, m.in. kompletną cyfryzację maszyn, procesów i systemów wytwórczych, oparte na ewolucyjnym rozwoju koncepcji cyfrowego bliźniaka. Artykuł powinien zachęcić do podjęcia problematyki wprowadzania nowych narzędzi informatycznych w rozwoju strategii Przemysłu 4.0.
EN
The main purpose of this paper is a systematic literature review on retrofitting tools, equipment, and infrastructure in the industrial domain. The methods used for the research were a systematic literature review: publication analysis, selection of databases, and appropriate modification of queries in individual databases. Findings were presented using a map of keywords, clusters, and charts. The main result of the conducted research was the identification of the main trends in the retrofitting area. The trends developed within the review can support further research into the direction of retrofitting methods and the factors determining the choice of specific techniques and tools in the digitalisation of manufacturing enterprises.
EN
Purpose: The reason for writing the paper was the strong trend of development of the concept of Industry 4.0. Companies have started their journey to smart manufacturing by applying the key technologies (pillars) of Industry 4.0. A decade has passed since 2011, when the idea of Industry 4.0 emerged as a form of industrial development based on the achievements of the fourth industrial revolution. During this decade, companies have become convinced by the idea of Industry 4.0 and have embarked on projects (investments) that fit into smart manufacturing. The aim of the research was presentation of the key fields of changes in the steel company towards smart manufacturing. Design/methodology/approach: The author used a case study to achieve the research aim. The subject of the research was one of the largest steel companies, which has a strong position in the global steel market. The presented areas of change of the company fit into the scope of changes belonging to smart manufacturing. In the study, following the company's statement, it was assumed that the implemented investments will create "smarter manufacturing" no "smart manufacturing" because their number and scope does not entitle either the company itself or the author of this paper to state that the changes made already at this stage create smart manufacturing in the steel company. Findings: The result of the case study is a model – a general concept – for the introduction of smart manufacturing in an enterprise. The term model was used for popular scientific purposes, as a form of generalisation of the presented scope of changes in the studied enterprise. Research limitations: The author is aware that the company used for the research may not constitute a sufficient area of research to formulate generalisation constructs on its basis, but she points out that the article is a part of a broader research, and the presented fragment of the research was used for the purpose of popularising knowledge on changes taking place in Industry 4.0. Practical implications: The paper promotes smart manufacturing projects in the steel sector. The practical implication of the paper is a proposal for a pathway to build smart manufacturing, which has constructs that are versatile enough to be used to create company pathways in other industry sectors of the economy. Originality/value: The article is part of the very topical theme of Industry 4.0, which has already been popularised to such an extent that it has become a reality and not just a proposal (future) for industrial development under the conditions of the Fourth Industrial Revolution. The paper describes actual projects for building smart manufacturing in the steel company.
EN
Purpose: Authors of the paper develop the main assumptions for project management in the Industry 4.0, and present them in the short form as basic knowledge, useful for managing smart manufacturing (SM) projects in companies. Design/methodology/approach: the process of preparing SM (smart manufacturing) projects and their implementation, in the Fourth Industrial Revolution, have been changed, due to the importance of the issue of linking more and more intelligent machines, IT-computer programs and monitored processes into integrated technological systems of key importance for the construction of cyber-physical production systems (CPS). The paper applies a conceptual analysis of possible areas of change in project management (PM) when enterprises build the smart manufacturing (SM). Findings/conclusions: companies building the smart environment must adapt their organization of project management to the new requirements and opportunities of Industry 4.0 (I 4.0) technologies. Research limitations: the narrow scope of knowledge about the ongoing changesin SM project management is due to the short period of experience (the Industry 4.0 concept has been implemented since 2011), therefore the authors have only presented the framework of changes in organization of project management. Practical implications: the authors' intention was to initiate a practical discussion about the changes in project management in the ongoing industrial revolution. Originality/value: Since 2011, when the government of the Federal Republic of Germany recognized the concept of "Industrie 4.0" as the key strategy of innovative development, Industry 4.0 has become an important discussed topic among practitioners and researchers. The fourth industrial revolution is expected to result in a leap in the efficiency of companies operating in the intelligent technological environment. Key technologies or pillars of Industry 4.0 are implemented in manufacturing enterprises to build the smart manufacturing processes. Enterprises develop new projects and make investments in order to create Cyber-Physical Production Systems (CPPS).
EN
Presently, digitalization is causing continuous transformation of industrial processes. However, it does pose challenges like spatially contextualizing data from industrial processes. There are various methods for calculating and delivering real-time location data. Indoor positioning systems (IPS) are one such method, used to locate objects and people within buildings. They have the potential to improve digital industrial processes, but they are currently underutilized. In addition, augmented reality (AR) is a critical technology in today’s digital industrial transformation. This article aims to investigate the use of IPS and AR in manufacturing, the methodologies and technologies employed, the issues and limitations encountered, and identify future research opportunities. This study concludes that, while there have been many studies on IPS and navigation AR, there has been a dearth of research efforts in combining the two. Furthermore, because controlled environments may not expose users to the practical issues they may face, more research in a real-world manufacturing environment is required to produce more reliable and sustainable results.
8
Content available remote How can hybrid materials enable a circular economy?
EN
Climate change, critical material shortages and environmental degradation pose an existential threat to the entire world. Immediate action is needed to transform the global economy towards a more circular economy with less intensive use of fossil energy and limited resources and more use of recyclable materials. Recyclable materials and manufacturing techniques will play a critical role in this transformation. Substantial advancements will be needed to achieve a more intelligent materials design to enhance both functionality and enhanced sustainability. The development of hybrid materials combining functionality at macro and nano scales based on organic and inorganic compounds, that are entirely recyclable could be used for tremendous applications. In this mini-review, we provide the reader with recent innovations on hybrid materials for application in water, energy and raw materials sectors. The topic is very modern and after its deep study we propose a creation an international research centre, that would combine the development of hybrid materials with green manufacturing. We have highlighted a framework that would comprise critical themes of the initial research needed. Such a centre would promote sustainable production of materials through intelligent hybridisation and eco-efficient, digital manufacturing and enable a circular economy in the long term. Such activities are strongly supported by current environmental and economical initiatives, like the Green Deal, REPower EU and digital EU initiatives.
PL
Celem artykułu były badania literaturowe nad koncepcją Przemysłu 4.0 i powiązanych z tym pojęć. W pracy podjęto rozważania na temat szans i zagrożeń, jakie może nieść ze sobą czwarta rewolucja przemysłowa w Polsce, w aspektach gospodarczych i społecznych. Na podstawie badań wyodrębniono najważniejsze zagadnienia związane z Przemysłem 4.0 oraz przeprowadzono analizę SWOT szans i zagrożeń rozwoju Przemysłu 4.0 w Polsce.
EN
The article aims to familiarize the reader with the concept of Industry 4.0 and related ideas. The article discusses the chances and threats that the fourth industrial revolution in Poland may bring in various aspects – economic and social. Based on the literature, the most important issues related to Industry 4.0 were identified and a SWOT analysis of Industry 4.0 opportunities in Poland was conducted.
10
Content available Industry 4.0: complex, disruptive, but inevitable
EN
Low cost manufacturing of quality products remains an essential part of present economy and technological advances made it possible. Advances and amalgamation of information technology bring the production systems at newer level. Industry 4.0, factory for future, smart factory, digital manufacturing, and industrial automation are the new buzz words of industry stalwarts and academicians. These new technological revolutions bound to change not only the complete manufacturing scenarios but many other sectors of the society. In this paper an attempt has been made to capture the essence of Industry 4.0 by redefining it in simple words, further its complex, disruptive nature and inevitability along with technologies backing it has been discussed. Its enabling role in manufacturing philosophies like Lean Manufacturing, and Flexible Manufacturing are also reported. At last the challenges its adoption and future research areas are proposed.
EN
In this article, it is described how the reconfigurable inter-operational buffers system built on the Digital Twin platform. Interoperating production buffers are now widely used in production. Their effect on the production system can be seen in decreasing downtime. From a cost-based point of view, the interoperating production buffers may generate a gain from the reduction in the volume of work-in-process, with which we increase production performance. This ratio depends on the average number of products that the buffers contain. The average number of pieces in the buffer is limited by the capacity of the buffer. The impact of turbulence in production is seen precisely on the average content of inter-operational production buffers. If we want to maintain work-in-process on optimal values, it is necessary to calculate and maintain the optimal capacity of each interoperating production buffer on the line. In the context of Smart Factory, it is currently possible that the current capacity of the interoperating production buffers is maintained according to the current state of production. In the subject system, real production facilities communicate with each other through the IoT as autonomous agents, which are decided on the basis of a formula to calculate the optimal capacity of the buffers, the prediction of faults and negotiation, thus actively maintaining the optimal capacity of intermediate operating production buffers for Smart Factory support.
EN
The creation of value in a factory is transforming. The spread of sensors, embedded systems, and the development of the Internet of Things (IoT) creates a multitude of possibilities relating to upcoming Real Time Analytics (RTA) application. However, already the topic of big data had rendered the use of analytical solutions related to a processing in real time. Now, the introduced methods and concepts can be transferred into the industrial area. This paper deals with the topic of the current state of RTA having the objective to identify applied methods. In addition, the paper also includes a classification of these methods and contains an outlook for the use of them within the area of the smart factory.
13
Content available Functional requirements for Production Internet (Ψ)
EN
Production Internet as an eco-system built on public infrastructure of Web-services would go beyond the traditional setups of industrial cooperation, as well as existing peer-to-peer services for economic exchanges, like e-sharing, e-tailing or crowd-funding. This paper discusses functional setups of Production Internet. Throughout the practice review and foresight research, the functional needs, requirements and benefits have been identified. The validation of functional specification was performed using a prototype multi-robot setting.
PL
Internet Produkcyjny (Ψ) jako ekosystem bazujący na wykorzystaniu publicznej infrastruktury usług sieciowych, ma wykroczyć poza ramy tradycyjnych form współpracy w przemyśle opartych na usługach peer-to peer, takich jak: e-tailing, e-sharing czy crowd-funding. W pracy przedstawiono wyniki analizy wymogów funkcjonalnych dla Internetu Produkcyjnego. Poprzez przegląd teorii i praktyki, poparty badaniami foresight, zidentyfikowano potrzeby i korzyści oraz typy użytkowników. Walidację koncepcji przeprowadzono przy zastosowaniu opracowanego prototypowego środowiska wielorobotowego.
PL
W dniach 7–12 marca 2017 r. w Tajpej na Tajwanie odbyły się 26. Międzynarodowe Targi Obrabiarek – TIMTOS 2017. Hasłem przewodnim imprezy było „Smart Manufacturing”. Podczas targów odbywały się konferencje prasowe. Można się było zapoznać z ofertą firm produkcyjnych i porozmawiać z kluczowymi postaciami przemysłu maszynowego Tajwanu.
EN
26th Taipei International Machine Tool Show – TIMTOS 2017 was held from 7 to 12 of March 2017. The keynote of this year show was “Smart Manufacturing”. The schedule included press conferences. Visitors were encouraged to get acquainted with the offers from production companies and to speak to the leading persons in Taiwan machinery industry.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.