Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 20

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  smart factory
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The research presented here was intended to describe to what extent secondary technical education is prepared to educate staff for the needs of Industry 4.0. Design/methodology/approach: The research was conducted by analysing the education offer of Polish and Silesian technical secondary schools while identifying professions that are important for the development of Industry 4.0 concept in production enterprises. The results obtained on a national scale were compared with those of the Śląskie voivodship. Findings: During the research it was found that the education offer in terms of preparation of future technical staff for the needs of Industry 4.0 is not sufficient and definitely not diversified enough. Among the “professions of the future” the profession of IT technician definitely prevails and its share in the offer is several times higher than that of other professions. Research limitations/implications: The research concerned only the offer of Polish secondary schools and not the actual number of students attending them. It is also difficult to accurately compare the values under study in the rest of the European Union due to the diversity of secondary education systems across countries. Practical implications: The research conducted shows that there is a need for greater promotion among young people of those faculties that are relevant from the perspective of requirements of the Industry 4.0. The promotion should take place both at the level of government and local authorities with active participation of industry representatives. Originality/value: The paper presents an analysis of Polish, and in particular Silesian technical secondary schools from the point of view of the opportunities they offer to graduates of primary schools wishing to gain a profession of a technician useful in their future careers in modern enterprises following the concept of Industry 4.0. The research results can serve as a starting point for analysis of the condition of Polish education in the context of requirements of employers wishing to employ qualified staff useful in modern production facilities in the future.
EN
Presently, digitalization is causing continuous transformation of industrial processes. However, it does pose challenges like spatially contextualizing data from industrial processes. There are various methods for calculating and delivering real-time location data. Indoor positioning systems (IPS) are one such method, used to locate objects and people within buildings. They have the potential to improve digital industrial processes, but they are currently underutilized. In addition, augmented reality (AR) is a critical technology in today’s digital industrial transformation. This article aims to investigate the use of IPS and AR in manufacturing, the methodologies and technologies employed, the issues and limitations encountered, and identify future research opportunities. This study concludes that, while there have been many studies on IPS and navigation AR, there has been a dearth of research efforts in combining the two. Furthermore, because controlled environments may not expose users to the practical issues they may face, more research in a real-world manufacturing environment is required to produce more reliable and sustainable results.
EN
Purpose: The paper focuses on a trial of defining the assumptions of the fourth industrial revolution and presenting selected applications of modern Blockchain technology. The aim of this article is to draw attention to the growing importance of modern technologies having a significant impact on the development of the world economy and to show the opportunities of their potential introduction to the market. Design/methodology/approach: The article is both theoretical and empirical. Literature research allowed to determine main pillars that Industry 4.0 is based on. From among them, the invention was selected, which has a wide range of impact both on the production environment and on the society. Findings: The article shows the essence of new technologies in the Industry 4.0 and the selected applications of one of them. The article defines the impact of new technologies on economic development and provides a general research of new technologies in new World Economics. Research limitations/implications: Blockchain network is a dynamically developing technology that can be, used in many different areas of life, unfortunately it is still in its infancy and its implementation is very slow. Practical implications: One of the applications of the Blockchain network is the implementation to production systems that make order management more flexible and guarantee non-failure production which is also encrypted. Social implications: Blockchain technology could redefine how people are using public services as daily bases. Originality/value: The article contains description of new technology in modern economics. The article may be useful for researchers working on that subject and or the practitioners trying develop production or services using such invention for their clients.
EN
Background: The concept of “Smart Factory” is a new paradigm. Past studies in literature point out several conceptual understandings of Smart Factory and their classifications. This paper answers the following scientific questions, where does the Smart Factory stand? What are its core characteristics and capabilities? What are the operational outcomes of the currently developed system? How can these pieces of equipment be integrated into an R&D methodology? Methods: Smart factory test-beds are used as a supporting case for this research work. A top-down hierarchical methodology is used to review the recent studies and analysis of the Smart Factory test-beds. The study follows these different steps 1) Literature review on the Smart factory concept on recent studies 2) Reasoning to capture the key characteristics and capabilities from the current developments 3) Experimental investigations to analyze the performances and explicit the sustainable impacts of different cases. Results: We present the Smart Factory “from the concept to operational outcomes”. The results stress: key characteristics, capabilities, influencing factors. Two case studies (literature and own investigation) illustrated the operational outcome and their sustainable impacts. Conclusions: The presented framework summarizes the current body of knowledge of the Smart Factory from review tothe operational outcomes.
PL
Wstęp: Koncepcja “Smart Factory” jest nowym paradygmatem. Najnowsze badania naukowe wskazują na co najmniej kilka znaczeń pojęcia Smart Factory oraz ich klasyfikacji. Prezentowana praca odpowiada na następujące pytania naukowe: na jakim etapie rozwoju jest Smart Factory? Jakie są jego najistotniejsze cechy charakterystyczne i zdolności? Jakie są operacyjne wyniki i możliwości z obecnie rozwijanych systemów? Jak różne elementy wyposażenia mogą być zintegrowane w metodologię R&D? Metody: Panele testujące są używane do wspomagania pracy naukowej. Pionowa hierarchiczna metodologia została zastosowana do analizy ostatnich badań naukowych oraz używanych paneli do testowania Smart Factory. W badaniu można wyodrębnić następujące etapy: 1. Przegląd literatury dotyczący koncepcji Smart Factory, 2. Określenie podstawowych cech charakterystycznych i zdolności w oparciu o najświeższy etap rozwoju, 3. Badania eksperymentalne mające na celu analizę działania i wpływu na rozwój zrównoważony różnych scenariuszy. Wyniki: W pracy przestawiono Smart Factory od przestawienia koncepcji do operacyjnych wyników. Wyniki obejmują: cechy charakterystyczne, zdolności, wpływ czynników. Dwie analizy (literatury oraz badania własne) ilustrują wynik operacyjny i jego wpływ na rozwój zrównoważony. Wnioski: Zaprezentowana praca podsumowuje obecny stan wiedzy na temat Smart Factory w oparciu o przegląd rozwiązań operacyjnych.
EN
Background: This paper has the aim to address the key area of managing complex Industry 4.0 production systems to support a successful adoption and integration of Industry 4.0. This is achieved by approaching methodological research challenges of Industry 4.0 in the form of lacking reference models and the need to establish common definitions of fundamental concepts. The general underlying challenge this paper aims to contribute to solve can therefore be defined as how the technological advances, like CPS, IoT, Big Data or CC can be best linked with each other on different levels of perspective and how they can be used by decision-makers to generate economic value and to improve existing processes. This is achieved through the introduction of the Industry 4.0 Knowledge & Technology Framework (IKTF). Methods: The Industry 4.0 Knowledge Framework (IKTF) is based on the concept of the micro-meso-macro analysis framework and consequently is representative for the approach of micro-meso-macro analysis in managerial practice. It proposes three categories of factors and places them in three basic levels layering them on top of each other. The macrolevel includes the financial, political and sociocultural factors that influence Industry 4.0. The meso-level includes the technical and organizational factors. The micro-level refers to individual factors, particularly individual companies’ intention to use Industry 4.0 in practical economic contexts. Results: The Industry 4.0 Knowledge & Technology Framework (IKTF) provides guidance to corporate decision makers by providing a comprehensive, multi-level sequential integration framework for Industry 4.0 based on a sequential micro, meso and macro perspective analysis of the individual corporate context. The aim of the IKTF is to support an informed and successful managerial decision-making process and therefore enable the integration of Industry 4.0 in a corporate context. Conclusion: As a first step, the structure, and contents of the IKTF are sequentially introduced and described. In a second and final step the functionality and applicability of the IKTF are demonstrated and discussed on a theoretical and practical level with the help of a case study.
EN
In the paper an analysis of the state of preparation of small and medium-sized enterprises in the metal industry in Poland and Slovakia was presented. Based on the conducted surveys, the challenges of industry 4.0, which will have to be met by small and medium enterprises, have been identified. Opportunities and threats for enterprises from the SME sector have been also defined. It was found that the biggest threats was lack of capital and lack of appropriate specialists, as well as high costs of staff preparation. Opportunities for enterprises are increased productivity and productivity, faster response to changes to customer requirements.
EN
In this article, it is described how the reconfigurable inter-operational buffers system built on the Digital Twin platform. Interoperating production buffers are now widely used in production. Their effect on the production system can be seen in decreasing downtime. From a cost-based point of view, the interoperating production buffers may generate a gain from the reduction in the volume of work-in-process, with which we increase production performance. This ratio depends on the average number of products that the buffers contain. The average number of pieces in the buffer is limited by the capacity of the buffer. The impact of turbulence in production is seen precisely on the average content of inter-operational production buffers. If we want to maintain work-in-process on optimal values, it is necessary to calculate and maintain the optimal capacity of each interoperating production buffer on the line. In the context of Smart Factory, it is currently possible that the current capacity of the interoperating production buffers is maintained according to the current state of production. In the subject system, real production facilities communicate with each other through the IoT as autonomous agents, which are decided on the basis of a formula to calculate the optimal capacity of the buffers, the prediction of faults and negotiation, thus actively maintaining the optimal capacity of intermediate operating production buffers for Smart Factory support.
PL
Postępująca wirtualizacja gospodarki oraz rozwój mediów społecznościowych doprowadziły do zmian w środowisku pracy. W konsekwencji zmianie ulega model rozwoju kompetencji pracowników z centralnie zaplanowanego do zdecentralizowanego, charakteryzującego się samoorganizacją i dostosowanego do indywidualnych potrzeb jednostek. W artykule przedstawiono rozwój kompetencji pracowników w kontekście uczenia się na stanowisku pracy w warunkach nowej organizacji pracy i produkcji zwanej współkonfiguracją.
EN
The progressing virtualization as well as the development of social media changed the traditional workplace. Consequently, the model of employee competency development is changing from the traditional top-down “command and control” approach, towards more “decentralized” approach that is self-organized and addresses the individual needs of each employee. The paper presents the development of employee competences within the context of the workplace learning resulting from a new work and production called co-configuration.
EN
The creation of value in a factory is transforming. The spread of sensors, embedded systems, and the development of the Internet of Things (IoT) creates a multitude of possibilities relating to upcoming Real Time Analytics (RTA) application. However, already the topic of big data had rendered the use of analytical solutions related to a processing in real time. Now, the introduced methods and concepts can be transferred into the industrial area. This paper deals with the topic of the current state of RTA having the objective to identify applied methods. In addition, the paper also includes a classification of these methods and contains an outlook for the use of them within the area of the smart factory.
10
PL
Omówiono innowacje techniczne i programowe w dziedzinie robotów, sterowania i komponentów automatyki, zaprezentowane podczas targów Hannover Messe 2018, w tym: ideę Industry 4.0, smart factory, nowe koncepcje sterowania, oprogramowanie wspomagające proces wytwarzania, systemy internetu rzeczy i zdalną diagnostykę.
EN
The paper illuminates the software and technical innovations in automation industrial equipment presented at the Hannover Messe 2018: the new idea of Industry 4.0, internet of things, smart factory, communication via field buses, cobots, industrial communication.
11
Content available remote Efektywne łączenie systemów podstawą inteligentnej produkcji
PL
Przedstawiono innowacyjne koncepcje programowo-sprzętowe zmierzające do przekształcania tradycyjnych środowisk wytwórczych w nowe, elastyczne i spełniające wymagania inteligentnych fabryk – zgodne z ideą Industry 4.0. Omówiono innowacje techniczne w dziedzinie robotów, sterowania programowego i komponentów automatyki zaprezentowane podczas targów EMO 2017.
EN
The paper illuminates the latest software and hardware concepts introduced to transform traditional manufacturing environments into new, flexible, smart, digital and Industrial 4.0 compliant factories. The technical innovations in the field of robots, programmable control, automation components which were presented at the EMO 2017.
EN
Background: The authors' motivation was the growing popularity and interest in both aspects as well as the attempt to identify the relationship between the intelligent factory and other models and concepts. This paper was developed to assess the state-of-the-art in the Smart Factory concept, and in particular its analysis in the context of the concept of sustainable development and green growth policy. The aim of the study was to identify a research gap as a lack of publications linking the concept of a Smart Factory with such management concepts as: lean or agile, as well as green growth policy and sustainable development. Methods: In the literature review, publications from the Web of Science and Scopus databases were analyzed. The identification of the gap was possible due to the analysis of the occurrence of the key concepts in the scientific papers which were selected by the authors. During the research, a sheet was created. It was the database of articles meeting the established criteria. Results and conclusions: There are no articles which cover the Smart Factory topic relating to lean or agile management at the same time. The systematic literature review and the analysis show that other authors rarely see lean and agile as a chance considering the Smart Factory and they do not combine these concepts. On the basis of the review it is impossible to state if the combination is possible and what the relations are. However, this topic is interesting and worth further analyses. This should be considered as a research gap. According to authors, there is a chance or even a need to use a lean and agile approach in production, resources and processes management.
PL
Wstęp: Wzrost popularności i zainteresowania w obu omawianych aspektach oraz próba identyfikacji relacji pomiędzy inteligentnym zakładem produkcyjnym i innymi modelami i koncepcjami był główną motywacją dla autorów dla pracy nad tym zagadnieniem. W prezentowanej pracy przedstawiono rozszerzoną ocenę koncepcji Smart Factory, w szczególności jej analizę w kontekście koncepcji zrównoważonego rozwoju oraz zielonego wzrostu. Celem pracy była identyfikacja luki naukowej powstającej na skutek braku publikacji naukowych poświęconych połączeniu koncepcji Smart Factory z takimi koncepcjami zarządzania jak: Lean lub agile, jak również zielonym wzrostem i zrównoważonym rozwojem. Metody: Na podstawie przeglądu literatury, dokonano analizy publikacji pochodzących z baz Web of Science oraz Scopus. Identyfikacji luki była możliwa dzięki analizie występowania kluczowych koncepcji w pracach naukowych, wybranych przez autorów. Dane następnie zostały uporządkowane tabelarycznie, tworząc bazę artykułów spełniających określone kryteria. Wyniki i wnioski: Nie stwierdzono istnienia artykułu, które jednocześnie poruszałby tematykę Smart Factory w relacji do zarządzania typu lean lub agile. Przegląd literatury wraz z jego analizą wykazał, że autorzy prac naukowych rzadko widzą metody lean lub agile jako szansę dla Smart Factory i nie łączą tych koncepcji. Na podstawie przeprowadzonego przeglądu nie jest możliwym określenie czy takie połączenie jest możliwe i jakie relacji zachodzą pomiędzy nimi. Jednak sama tematyka jest interesująca i warta dalszych analiz. Powinno to być potraktowania jako luka naukowa. Według autorów, istnieje szansa i potrzeba stosowania metod lean oraz agile w zarządzaniu produkcją, zasobami i procesami.
EN
Background: The Industry 4.0 and Smart Factory concepts have gained recognition in recent years and have caught the attention of many authors, which has been evident in various publications in recent years. However, the authors of the following paper have recognised the need for an analysis of the implementation steps of the aforementioned concepts. The results of this analysis can differ, depending on prevailing conditions in a particular country and the technologies and knowledge available. Methods: On the basis of a literature analysis, the authors of this paper have studied and listed the main requirements for implementing technologies which allow a factory to be described as a Smart Factory. Basic terminology connected with the concept is also described. Results: On the basis of a self-developed evaluation sheet, and an analysis of literature, the authors have stated the criteria according to which a factory can be described as a Smart Factory, and collated them using an evaluation sheet. Conclusion: The authors would like to start a scientific debate on the topic of Smart Factories, and emphasise the need for detailed analysis of each step of implementation. The results of the paper show the advantages and disadvantages of modern management strategies and can be used as a guide for businesses which are considering implementing this technology.
PL
Wstęp: Koncepcje Industry 4.0 i Smart Factory zyskują popularność i znajdują się w obszarze zainteresowań wielu autorów, co potwierdzają publikacje z ostatnich lat. Jednak autorzy poniższej pracy dostrzegli potrzebę szczegółowej analizy etapów implementacji wyżej wymienionych pojęć. Wyniki analizy mogą się różnić w zależności od warunków panujących w danym kraju oraz technologii i dostępności wiedzy. Metody: Na podstawie systematycznego przeglądu literatury, autorzy niniejszego artykułu zbadali i wymienili główne wymagania dotyczące wdrażania technologii, które pozwalają określić fabrykę jako Smart Factory. Omówiono również podstawową terminologię związaną z koncepcją. Wyniki: Na podstawie samodzielnie opracowanego arkusza oceny i analizy literatury autorzy opracowali wskaźniki, którymi powinny cechować się zakłady produkcyjne aspirujące do miana Smart Factory. Wnioski: Autorzy chcieliby rozpocząć naukową debatę na temat Smart Factory i podkreślić potrzebę szczegółowej analizy każdego etapu wdrażania koncepcji. Wyniki pracy wskazują na zbilansowane zalety i wady nowoczesnych strategii zarządzania i mogą być wykorzystane jako podstawa dla środowisk biznesowych, które rozpatrują ich wdrożenie.
EN
Background: The paper presents recent results of the ongoing collaborative research project "MyCPS" (Human-centered development and application of Cyber-Physical Systems). Methods: Within the scope of the project, 14 partners, amongst seven industrial partners, develop methods and tools to set-up applications of intelligent digitalization and automation of industrial processes. Results: Within the paper they are over 385 use cases evaluated according to comparative criteria. Furthermore, use cases were classified due to their development stage of industry 4.0 goals and promises. The three levels 'information', 'interaction' and 'intelligence' are used to differentiate applications according to their degree of maturity in industry 4.0 terms. Conclusion: In MyCPS, special emphasis is the role of the workforce and the interactions of the technology-led use cases with employees. Thereby, the analysis helps enterprises and researchers to self-assess key-aspects of the development of industry 4.0 use cases.
PL
Wstęp: Praca przedstawia wyniki prac w ramach projektu badawczego "MyCPS" (Humancentered development and application of Cyber-Physical Systems). Metody: W ramach projektu, 14 partnerów, w tym siedmiu będących przedstawicielami przemysłu, opracowało metody i narzędzia do zastosowania aplikacji dla inteligentnej digitalizacji i automatyzacji procesów przemysłowych. Wyniki: Poddano ocenie porównawczej 385 przypadków. Zostały one sklasyfikowane według poziomu rozwoju celów Industry 4.0. Trójpoziomową "informację", "połączenie" oraz "inteligencję" użyto dla rozróżnienia aplikacji według poziomu ich dojrzałości w ujęciu Industry 4.0. Wnioski: W projekcie MyCPS specjalną uwagę zwrócono na rolę siły roboczej oraz interakcji rozwiązań technologicznych z pracownikami. Dzięki temu, analiza pomaga przedsiębiorstwom oraz badaczom na ocenę kluczowych aspektów w rozwoju Industry 4.0.
EN
Background: The paper addresses common difficulties of understanding the scope and the underlying technologies of "Industry 4.0". Existing definitions comprise a variety of technologies and applications, processes as well as business models. Their difficult differentiation has led to a complicated understanding of the topic altogether. Therefore, this study aims at a structuring of the scope of "Industry 4.0" using the average importance of its underlying technologies, as it is represented in 38 survey publications dedicated on Industry 4.0. Methods: Based on a review of existing survey literature on Industry 4.0, relevant technologies are identified. Next, these technologies are recapped in five technology areas. Furthermore, all technologies are assessed according to their relevance to Industry 4.0 using citation indices of the respective publication. Finally, two-dimensional figures are used to present an overview structure of all cited technologies, their structural connections and their relevance. In summary, a structuring of "Industry 4.0" through the cited technologies and their evolution over the years 2013 until 2016 is displayed to facilitate the understanding of significant research trends and promising application areas within "Industry 4.0". Conclusion: Compared to existing reviews and empirical approaches on the topic, this paper focusses on a review of survey literature specifically dedicated to an understanding of the concept of Industry 4.0. The results allow an overview of the respective relevance of technologies within the comprehensive scope of the topic. It shows the most often used technologies (web services with a relative importance of 3.46/5) as well as the evolvement of the importance of each technology within the period of 2013-2016.
PL
Wstęp: Powszechnie można się spotkać z trudnościami ze zrozumieniem pojęcia Industry 4.0 zarówno pod względem jego zakresu jak i związanych z nim technologii. Istniejące definicje obejmują różne technologie, aplikacje, procesy jak i modele biznesowe. Ich skomplikowane rozgraniczenie prowadzi do trudności ze zrozumieniem całości zagadnienia. Celem tej pracy jest ustrukturyzowanie zakresu Industry 4.0. poprzez zastosowanie średniej ważności powiązanych technologii w oparciu o 38 prac badawczych poświęconych zagadnieniu Industry 4.0. Metody: W oparciu o analizę istniejącej literatury naukowej, zidentyfikowano istotne technologie. Następnie, technologie te zostały uporządkowane w pięć obszarów technologicznych. Dodatkowo, wszystkie technologie zostały oszacowane w odniesieniu do ich istotności dla Industry 4.0 w oparciu o wskaźnik cytowalności odpowiedniej publikacji. W kolejnym kroku, dwuwymiarowe dane zostały użyte do zaprezentowania przeglądowej struktury wszystkich cytowanych technologii, ich strukturalnych połączeń i istotności. Następnie zaprezentowano strukturę Industry 4.0 poprzez cytowane technologie i ich ewolucję w latach 2013-2016 w celu ułatwienia zrozumienia istotnych trendów badań jak i obiecujących obszarów aplikacji związanych z Industry 4.0. Wnioski: W porównaniu do istniejących analiz porównawczych i podejść empirycznych, prezentowana praca skupia się na przeglądzie i analizie literatury z naciskiem na zrozumienie koncepcji Industry 4.0. Wyniki umożliwiają przegląd odpowiednich istotności technologii w obrębie badanego obszaru tematycznego. Prezentuje najczęściej stosowane technologie (usługi sieciowe ze względną ważnością 3,46/5) jak również rozwój istotności każdej z technologii w okresie 2013-16.
EN
The main objective of this article is to describe Industry 4.0 and the key manufacturing-technology-related technological and business challenges for manufacturing companies. The groups especially interested in the implementation of Industry 4.0 are the operations, technical, and production directors responsible for operational excellence of manufacturing plants, strategic development, and business continuity. Based on the latest Industry 4.0 and manufacturing technology market research, factories located in Poland are less technologically advanced than their counterparts in Western European plants. Accordingly, development of the model for assessing the current level of maturity for manufacturing technology related to the Industry 4.0 initiative becomes a relevant research task. In the article, key Industry 4.0-related technological areas will be described. Based on extensive research into international references and industrial consulting experiences in the industrial business consulting conducted in Polish manufacturing companies, the manufacturing technology ManuTech Maturity Model (MTMM) concept related to Industry 4.0 will be developed and presented. A substantial and innovative part of the article will be devoted to the adjustment of a proposed maturity model to specific features of the Polish industrial and manufacturing sector. This will be relevant due to the noticeable differences in the levels of technological advancement between the Western and Eastern Europe sectors.
17
Content available remote W kierunku samoorganizujących się środowisk wytwórczych
PL
Omówiono innowacje techniczne w dziedzinie robotów, sterowania programowego i komponentów automatyki zaprezentowane podczas Hannover Messe 2017, w tym: ideę Industry 4.0, smart factory, nowe koncepcje sterowania, oprogramowanie wspomagające proces wytwarzania, systemy Internetu rzeczy i zdalną diagnostykę.
EN
The paper illuminates the software-technical innovations in automation industrial equipment presented at the Hannover Messe 2017: the new idea of Industry 4.0, Internet of things, smart factory, communication via field buses, Co-bots, industrial communication.
EN
Although being not in accordance with the original concept proposed in the “Industrie 4.0”, the smart factory has been gradually applied to the practice. In contrast, we can observe that nearly all discourses, suggestions and discussions have been carried out without considering the convertibility of flexible manufacturing in FCIPS (Flexible Computer-Integrated Production Structure), which is the utmost leading facility within the industrial nation, to the CPS (Cyber Physical Systems) module in the smart factory. Admitting the powerful potentiality of the smart factory, at crucial issue is to discuss to what extent and how the technological and human resources so far accumulated in FCIPS are available for the smart factory. This paper proposes, first, the conceptual drawing of the smart factory on the basis of the concept of FCIPS, and then suggests the similarity of both the concepts. In fact, the smart factory consists of cloud computing, information communication network and CPS modules, whereas FCIPS consists of CIM, information communication network and a group of FMCs (Flexible Manufacturing Cells). Then, the paper describes the present and near future perspectives of the CPS module and FMC, especially placing the stress on machining, and asserts the convertibility of FMC for “One-off Production with Keen Machining Cost” to the CPS module. Finally, the paper summarizes the research and engineering development subjects in FCIPS and the smart factory necessary to be investigated hereafter together with detailing one leading subject, i.e. methodology to incorporate the human-intelligence into CIM.
19
Content available remote Urządzenia automatyki przemysłowej w środowisku Industry 4.0
PL
Omówiono propozycje programowo-sprzętowe związane z wprowadzaniem koncepcji Industry 4.0 do praktyki przemysłowej, zaprezentowane podczas Hannover Messe 2016 przez różnych producentów. Te rozwiązania wspierają podstawowe komponenty idei Industry 4.0, takie jak: sieci przemysłowe, systemy cyberfizyczne czy Internet rzeczy.
EN
The article discusses presented by various manufacturers at Hannover Messe 2016 new and sophisticated products related to the concept of Industry 4.0 in industrial practice. These products support the basic components of this idea, such as industrial networks, cyberphysical systems or the Internet of things.
20
PL
4. rewolucja przemysłowa wymaga od specjalistów szerokiego zakresu wiedzy teoretycznej z dziedziny mechatroniki, automatyzacji, technologii produkcji i informatyki, połączonej z wysokim poziomem umiejętności praktycznych. Proponowana przez FESTO platforma edukacyjna umożliwia kształcenie przyszłych inżynierów i dokształcanie obecnych kadr inżynieryjnych w warunkach idealnie oddających realia fabryki przyszłości, już dziś szeroko obecnych w obszarach produkcji.
EN
This article presents Festo multiperspective approach to professional qualifications for the 4th industrial revolution. The concept introduces into the latest technological solutions in the field of flexible manufacturing engineering. Since Festo was founded it has made a great effort to the dissemination of the latest technical knowledge through the access to the latest industrial applications in the professional education of the young generation of future employees.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.