Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  slip system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Numerical simulations of tension and shear tests for a polycrystalline, anisotropic material were performed using crystal plasticity theory. The slip was considered here as the main mechanism of plastic deformation. Constitutive equations to describe the elastic-plastic deformation caused by the slip are presented. The generation and meshing of various shapes geometries (cubic and paddy shapes) with randomly-orientated grains by means of open source program NEPER program was shown. The Voronoi tessellation was used in order to include morphological properties of a crystalline material. The selected results of elastic-plastic analyses (stress, strain distributions and the macroscopic stress-strain resulting from homogenization) are presented here. The results obtained show the non-uniform distribution of stress and strain for different grains associated with their crystal orientation. The crystal plasticity finite element modelling of materials subjected to plastic deformation is important for microstructure-based mechanical predictions, as well as for the engineering design and to perform simulations involving not only the change of a material’s shape at a macro level but also the phenomena occurring in material in a micro-scale.
2
Content available remote Evolution of Goss texture in an Al–Cu–Mg alloy during cold rolling
EN
Evolution of Goss texture in an Al–Cu–Mg alloy during cold rolling was investigated by three-dimensional orientation distribution functions, electron back-scattered diffraction and transmission electron microscopy. The results showed that with increasing reduction from 23.7 to 80%, Goss textures gradually transformed into Brass texture through the activation of sole {111}<110> slip systems. When rolling reduction further increased from 80 to 86.3%, Goss texture rather than Brass started to rotate towards Copper and S components. The formation of Copper and S textures at these high reductions was attributed to the activation of {110}<110> and {001}<110> non-octahedral slip systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.