Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  slip flow
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Hydromagnetic flow of water based nanofluids over a nonlinearly stretching sheet in the presence of velocity slip, temperature jump, magnetic field, nonlinear thermal radiation, thermophoresis and Brownian motion has been studied. The article focuses on Cu water nanofluid and Ag water nanofluid. The similarity transformation technique is adopted to reduce the governing nonlinear partial differential equations into nonlinear ordinary differential equations and then they are solved numerically utilizing the Nachistem – Swigert shooting method along with the fourth order Runge Kutta integration technique. The influence of physical parameters on the flow, temperature and nanoparticle volume fraction are presented through graphs. Also the values of the skin friction coefficient at the wall and nondimensional rate of heat transfer are given in a tabular form. A comparative study with previous published results is also made.
EN
MHD slip flow past an extending surface with third type (convective) boundary condition and thermal radiation is analysed. The governing momentum and energy equations are converted into set of nonlinear ordinary differential equations using appropriate similarity transformations. The Fourth-Order Runge-Kutta shooting method is applied for obtaining the numerical solution of the resulting nonlinear ordinary differentia equations. The numerical results for velocity and temperature distribution are found for different values of the vital parameters, namely: the magnetic interaction factor, slip factor, convective factor, Prandtl number and radiation factor and are presented graphically, and discussed.
EN
Investigation of an MHD convective flow of viscous, incompressible and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is carried out. Forchheimer-Brinkman extended Darcy model is assumed to simulate momentum transfer within the porous medium. A magnetic field of uniform strength is applied normal to the plates. The analytical results are evaluated numerically and the presented graphically to discuss in detail the effects of different parameter entering into the problem.
EN
An analysis of an oscillatory magnetohydrodynamic (MHD) convective flow of a second order (viscoelastic), incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter […], Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation […].
EN
In this paper an oscillatory flow of a viscoelastic, incompressible and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel plates is discussed. One of these plates is subjected to a slip-flow condition and the other to a no-slip condition. The pressure gradient in the channel oscillates with time. A magnetic field of uniform strength is applied in the direction perpendicular to the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature difference of the two plates is also assumed high enough to induce heat transfer due to radiation. A closed form analytical solution to the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters entering into the problem. A number of particular cases have been shown by dotted curves in the figures. During the analysis it is found that the physical and the mathematical formulations of the problems by Makinde and Mhone (2005), Mehmood and Ali (2007), Kumar et al. (2010) and Choudhury and Das (2012) are not correct. The correct solutions to all these important oscillatory flow problems are deduced.
6
Content available remote Slip flow in the gas-lubricated Rayleigh step-slider bearing
EN
Singular perturbation methods are applied to analyse the isothermal operation of the Rayleigh step slider bearing of narrow geometry, when the bearing number is moderate and the gas lubricant is rarefied, so that 'slip flow' occurs. Approximations to the pressure field and load-carrying capacity of such a bearing are obtained; and the influence of step geometry and degree of slip on those quantities is discussed.
7
Content available remote Extrusion and rheological properties of a-aluminum oxide pastes
EN
The extrusion properties of a-aluminum oxide pastes were investigated via capillary rheometry. Several parameters affecting the paste behavior were considered, including the nature of the fluid phase (water, hydroxyethylcellulose, silicone oil), the solids concentration , the extrusion rate and the preparation method (direct coagulation casting versus homogenization using a Z-kneader and mixing die). The paste stability, flow curves and wall slip behavior were determined under the extrusion conditions.
EN
Capillary rheometric methods (Mooney, twin capillary, rough die, and color marking methods) are presented and application of these techniques to determine wall slip behavior of pastes is discussed, using measurements of aluminum oxide-silicone oil pastes as an example.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.