Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  slab openings
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A space truss structural system is a three-dimensional arrangement of linear elements in a pyramid pattern forming a Double Layer Grid (DLG) system. Space trusses are an elegant and economical means of covering larger areas such as roof systems, in a wide variety of applications such as a stadium, aircraft-hanger, assembly hall, etc. The major problem encountered in using the space truss as a roofing system is the sudden failure of the whole structure due to critical buckling of the top chord member. Earlier research has shown that the optimal solution to overcome such a failure is by providing a small thickness of concrete slab over the space truss, so that the space truss with concrete slab (Composite Space Truss) will act as a floor system for the multi-storey building. For better ventilation and lighting in the building, the need for openings in the composite space truss is unavoidable; however, providing an opening in the concrete slab will reduce the load carrying capacity of the structure. The analysis of a composite space truss of size 30m x 30m with all possible locations of openings for four different support conditions was carried out using ANSYS in order to study the load - deflection behaviour. Further, the ductility factor and energy absorption capacity of the composite space truss with different locations of slab openings were compared.
EN
Most current concrete design codes include provisions for punching shear of reinforced concrete slabs supported on columns with L, T, and cruciform shapes. Reference studies verifying the accuracy of these code provisions are typically not provided. Empirical data of punching failures of slabs supported on columns with L, T, and cruciform shapes are limited due to the cost and time required to test specimens with slab thicknesses and column sizes commonly used in practice. In this paper, the punching shear behaviour of five interior L-shaped slab-column connections, one without a slab opening and four with slab openings, subjected to static concentric loading are analyzed using a plasticity-based nonlinear finite element model (FEM) in ABAQUS. The FEM is similar to models previously calibrated at the University of Waterloo and are calibrated considering nine slabs that are tested to study the impact of column rectangularity on the punching shear behaviour of reinforced concrete slabs. The finite element analysis results indicate that shear stresses primarily concentrate around the ends of the L, and that current code predictions from ACI 318-19 and Eurocode 2 may be unconservative due to the assumed critical perimeters around L-shaped columns.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.