Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  skull stripping
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
MRI scanner captures the skull along with the brain and the skull needs to be removed for enhanced reliability and validity of medical diagnostic practices. Skull Stripping from Brain MR Images is significantly a core area in medical applications. It is a complicated task to segment an image for skull stripping manually. It is not only time consuming but expensive as well. An automated skull stripping method with good efficiency and effectiveness is required. Currently, a number of skull stripping methods are used in practice. In this review paper, many soft-computing segmentation techniques have been discussed. The purpose of this research study is to review the existing literature to compare the existing traditional and modern methods used for skull stripping from Brain MR images along with their merits and demerits. The semi-systematic review of existing literature has been carried out using the meta-synthesis approach. Broadly, analyses are bifurcated into traditional and modern, i.e. soft-computing methods proposed, experimented with, or applied in practice for effective skull stripping. Popular databases with desired data of Brain MR Images have also been identified, categorized and discussed. Moreover, CPU and GPU based computer systems and their specifications used by different researchers for skull stripping have also been discussed. In the end, the research gap has been identified along with the proposed lead for future research work.
EN
In this paper we consider the problem of automatic localization of multiple sclerosis (MS) lesions within brain tissue. We use a machine learning approach based on a convolutional neural network (CNN) which is trained to recognize the lesions in magnetic resonance images (MRI scans) of the patient’s brain. The training images are relatively small fragments clipped from the MRI scans so – in order to provide additional hints on location of a given clip within the brain structures – we include anatomical information in the training/testing process. Our research has shown that indicating the location of the ventricles and other structures, as well as performing brain tissue classification may enhance the results of the automatic localization of the MS-related demyelinating plaques in the MRI scans.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.