Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  skin tissue
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A three-phase-lag (TPL) model is proposed to describe heat transfer in a finite domain skin tissue with temperature dependent metabolic heat generation. The Laplace transform method is applied to solve the problem. Three special types of heat flux are applied to the boundary of skin tissue for thermal therapeutic applications. The depth of tissue is influenced by the different oscillation heat flux. The comparison between the TPL and dual-phase-lag (DPL) models is analyzed and the effects of phase lag parameters […] and material constant […] on the tissue temperature distribution are presented graphically.
EN
The aim of this paper was to evaluate which method of acellularization and sterilization is optimal, in the meaning of which processes have the least impact on the deterioration of mechanical properties of porcine tissues used for xenogeneic applications. Methods: The static tensile probe was conducted for 80 skin specimens obtained from transgenic swine, which are used as a wound dressing for skin recipient. Obtained data were subsequently analyzed with the use of statistical methods. Results: It was found that Young’s modulus for the samples after the sterilization process for the dispase substance and the mixed method (SDS + trypsin) were statistically significantly changed. In the case of dispase, Young’s modulus value before the sterilization process was 12.4 MPa and after the value increased to 28.0 MPa. For the mixed method (SDS + trypsin) before the sterilization process Young’s modulus value was 5.6 MPa and after it was increased to 6.3 MPa. The mixed method (SDS + trypsin) had the slightest effect on changing the mechanical properties of the samples before and after the sterilization process. Conclusions: It was confirmed that different methods of acellularization and the process of sterilization have an influence on the change of mechanical properties of the skin of transgenic swine. In the authors’ opinion, the mixed method (SDS + trypsin) should be recommended as the best one for the preparation of transgenic porcine dermal dressings because it ensures a smaller probability of dressing’s damage during a surgical procedure.
EN
Measurement of the perfusion coefficient and thermal parameters of skin tissue using dynamic thermography is presented in this paper. A novel approach based on cold provocation and thermal modelling of skin tissue is presented. The measurement was performed on a person’s forearm using a special cooling device equipped with the Peltier module. The proposed method first cools the skin, and then measures the changes of its temperature matching the measurement results with a heat transfer model to estimate the skin perfusion and other thermal parameters. In order to assess correctness of the proposed approach, the uncertainty analysis was performed.
6
Content available remote Numerical modeling of biological tissue heating : admissible thermal dose
EN
The cylindrical domain of skin tissue subjected to an external heat flux is considered (shape of domain is determined by form of function describing Neumann boundary condition on external surface of the system). The first version of numerical simulations concerns the heterogeneous multi-layered skin tissue domain (epidermis, dermis, subcutaneous region). The thermophysical parameters of successive layers are assumed to be different, but constant. The second version of computations concerns the homogeneous domain, but the mean values of the thermophysical parameters are temperature-dependent (non-linear task). Knowledge of the spatial, time-dependent temperature field allows one to determine the so-called thermal dose and also the degree of tissue destruction. The algorithm presented can be useful in medical practice, among others, at the stage of the hyperthermia therapy scheme.
PL
W pracy rozpatruje się niejednorodny obszar tkanki skórnej (naskórek, skóra właściwa, tkanka podskórna) poddany oddziaływaniu zewnętrznego strumienia ciepła. Przyjęta postać funkcji opisującej przestrzenny rozkład zewnętrznego źródła ciepła determinuje osiowo-symetryczny charakter zadania i zorientowanie rozpatrywanego fragmentu tkanki w układzie współrzędnych walcowych. Procesy cieplne zachodzące w obszarze tkanki opisuje układ cząstkowych równań parabolicznych (tzw. równań Pennesa) uzupełniony odpowiednimi warunkami brzegowo-początkowymi. W obliczenia numerycznych zastosowano schemat jawny metody różnic skończonych dla zadań nieliniowych. W końcowej części pracy przedstawiono wyniki symulacji numerycznych.
EN
Non-homogeneous skin tissue domain subjected to an external heat flux is considered. The form of external heating determines the axiallysymmetrical type of task considered and the sub-domain of tissue is oriented in cylindrical co-ordinate system. The thermal processes proceeding in the tissue domain are described by the system of partial differential equations (the Pennes equations) supplemented by the adequate boundary and initial conditions. At the stage of numerical computations the finite difference method for transient and non-linear problems is used. In the final part of the paper the examples of computations and also the conclusions are presented.
8
Content available remote Sensitivity analysis of burn integrals with respect to thickness of epidermis
EN
In the paper the numerical analysis of thermal process proceeding in the domain of one-dimensional skin tissue subjected to an external heat source is presented. The degree of the skin burn can be predicted on the basis of Henriques integrals. Main subject of paper is the sensitivity analysis of these integrals with respect to the thicknesses of epidermis and dermis. On the stage of numerical realization the boundary element method has been used.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.