In this paper, a singularly perturbed differential equation with a large delay is considered. The considered problem contains a large delay parameter on the reaction term. The solution of the problem exhibits the interior layer due to the delay parameter and the strong right boundary layer due to the small perturbation parameter ε. The resulting singularly perturbed problem is solved using the fitted non-polynomial spline method. The stability and parameter uniform convergence of the proposed method is proved. To validate the applicability of the scheme, two model problems of the variable coefficient are considered for numerical experimentation.
In this paper, we study singularly perturbed nonlinear reaction-diffusion equations. The asymptotic behavior of the solution is examined. The difference scheme which is accomplished by the method of integral identities with using of interpolation quadrature rules with weight functions and remainder term integral form is established on adaptive mesh. Uniform convergence and stability of the difference method are discussed in the discrete maximum norm. The discrete scheme shows that orders of convergent rates are close to 2. An algorithm is presented, and some problems are solved to validate the theoretical results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.