Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  simulation codes
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper refers to previous publications of the author, focused on criteria of casting feeding, including the thermal criterion proposed by Niyama. On the basis of this criterion, present in the post-processing of practically all the simulation codes, danger of casting compactness (in the sense of soundness) in form of a microporosity, caused by the shrinkage phenomena, is predicted. The vast majority of publications in this field concerns shrinkage and feeding phenomena in the cast steel castings – these are the alloys, in which parallel expansion phenomenon does not occur as in the cast irons (graphite crystallization). The paper, basing on the simulation-experimental studies, presents problems of usability of a classic, definition-based approach to the Niyama criterion for the cast iron castings, especially of greater massiveness, for prediction of presence of zones of dispersed porosity, with relation to predictions of the shrinkage type defects. The graphite expansion and its influence on shrinkage compensation during solidification of eutectic is also discussed.
EN
The validation of each simulation code used in foundry domain requires individual approach due to its specificity. This validation can by elaborated on the basis of experimental results or in particular cases by comparison the simulation results from different codes. The article concerns the influence of grey cast iron density curve and different forms of solid fraction curve Fs=f(T) on the formation of shrinkage discontinuities. Solid fraction curves applying Newtonian Thermal Analysis (NTA) were estimated. The experimental and numerical simulation tests were performed on the castings, which were made with Derivative Thermal Analysis (DerTA) standard cups. The numerical tests were realized using NovaFlow&Solid (NF&S), ProCast and Vulcan codes. In this work, the coupled influence of both curves on the dynamics of the shrinkage-expansion phenomena and on shrinkage defects prognosis in grey cast iron castings has been revealed. The final evaluation of the simulation systems usefulness should be based on validation experiment, preceded by comparing the simulation results of available systems which are proposed in given technology.
EN
The tolerance of damage rule progressively meets the approval in the design casting parts procedures. Therefore, there were appeared the new challenges and expectations for permanent development of process virtualization in the mechanical engineering industry. Virtualization is increasingly developed on the stage of product design and materials technologies optimization. Increasing expectations of design and process engineers regarding the practical effectiveness of applied simulation systems with new proposed up-grades modules is observed. The purpose is to obtain simulation tools allowing the most possible realistic prognosis of the casting structure, including indication, with the highest possible probability, places in the casting that are endangered with the possibility of shrinkage– and gas porosity formation. This 3D map of discontinuities and structure transformed in local mechanical characteristics are used to calculate the local stresses and safety factors. The needs of tolerance of damage and new approach to evaluate the quality of such prognosis must be defined. These problems of validation of new models/modules used to predict the shrinkage– and gas porosity including the chosen structure parameters in the example of AlSi7 alloy are discussed in the paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.