Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  signal switching algorithm
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
With the growing number of city vehicles, traffic management is becoming a persistent challenge. Traffic bottlenecks cause significant disturbances in our everyday lives and raise stress levels, negatively impacting the environment by increasing carbon emissions. Due to the population increase, megacities are experiencing severe challenges and significant delays in their day-to-day activities related to transportation. An intelligent traffic management system is required to assess traffic density regularly and take appropriate action. Even though separate lanes are available for various vehicle types, wait times for commuters at traffic signal points are not reduced. The proposed methodology employs artificial intelligence to collect live images from signals to address this issue in the current system. This approach calculates traffic density, utilizing the image processing technique YOLOv4 for effective traffic congestion management. The YOLOv4 algorithm produces better accuracy in the detection of multiple vehicles. Intelligent monitoring technology uses a signal-switching algorithm at signal intersections to coordinate time distribution and alleviate traffic congestion, resulting in shorter vehicle waiting times.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.