This research presents an advanced control approach for battery management in battery electric utility vehicles (BEUV) operating in indoor logistics environments. The proposed approach utilizes a combination of proportional-integral (PI), fuzzy PI, and interval type 2 fuzzy PI (IT2fuzzyPI) control structures to augment the state space model for battery management. The state space model incorporates the voltage and current of each battery cell as state variables and considers the current demand from the electric motor as an input. By integrating fuzzy logic with PI control and considering uncertainty, the IT2fuzzyPI structure offers improved control recital and system robustness in the occurrence of nonlinearities, uncertainties, and turbulences. The outcomes of the simulation validate the effectiveness of the proposed scheme in managing the battery pack system’s state of charge and controlling the rates of charging and discharging. The IT2fuzzyPI control significantly improves the overall proficiency and longevity of the battery system, making it suitable for battery electric utility vehicles in logistics environments. This research contributes to the field of battery management systems, providing a valuable tool for designing and evaluating high-performance electric vehicles with enhanced control capabilities.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.