Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sieć neuronowa wielowarstwowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Tongue machine interface (TMI) is a tongue-operated assistive technology enabling people with severe disabilities to control their environments using their tongue motion. In many disorders such as amyotrophic lateral sclerosis or stroke, people can communicate with the external world in a limited degree. However, they may be disabled, while their mind is still intact. Various tongue–machine interface techniques has been developed to support these people by providing additional communication pathway. In this study, we aimed to develop a tongue–machine interface approach by investigating pattern of glossokinetic potential (GKP) signals using neural networks via simple right/left tongue touchings to the buccal walls for 1-D control and communication, named as GKP-based TMI. As can be known in the literature, the tongue is connected to the brain via hypoglossal cranial nerve. Therefore, it generally escapes from the severe damages, in spinal cord injuries and was slowly affected than limbs of persons suffering from many neuromuscular degenerative disorders. In this work, 8 male and 2 female naive healthy subjects, aged 22 to 34 years, participated. Multilayer neural network and probabilistic neural network were employed as classification algorithms with root-mean-square and power spectral density feature extraction operations. Then the greatest success rate achieved was 97.25%. This study may serve disabled people to control assistive devices in natural, unobtrusive, speedy and reliable manner. Moreover, it is expected that GKP-based TMI could be a collaboration channel for traditional electroencephalography (EEG)-based brain computer interfaces which have significant inadequacies arisen from the EEG signals.
EN
Visually evoked potentials (VEP) are evoked responses of the brain corresponding to a specific visual stimulus. Ophthalmologists often refer their patients to VEP test if the latter suffers any vision abnormalities that cannot be diagnosed using conventional analysis. By investigating the VEP responses, medical experts can narrow down the possible cause of the defect. Although this method provides valuable information to the medical practitioner, there are several drawbacks of the analysis that can affect the diagnosis result. The conventional averaging of the signals results in inter-trial variation between the VEP responses to be lost. This method also requires large number of trials, which causes fatigue in patients and reduces the diagnostic accuracy. Therefore, we have proposed a new method of analysis using statistical features derived from time and spectral space for the discrimination of vision impairments. Feature enhancement methods such as feature weighting and dimensional reduction are used to enhance the statistical features prior to the analysis. Four clustering methods are employed to increase the interclass separability of the control and myopic features while reducing the within class variability. The dimension of the weighted features is reduced using a combination of principal component analysis (PCA) and independent component analysis (ICA) techniques prior to classification. The proposed method is able to achieve 100% accuracy using extreme learning machine (ELM) and multi layer neural network (MLNN) classifiers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.