Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sieć molekularna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Próbki polietylenu liniowego (HDPE) o zróżnicowanej masie cząsteczkowej i architekturze łańcucha poddano deformacji plastycznej przez ściskanie w płaskim stanie odkształcenia do różnych odkształceń. Przeprowadzone badania zachowania próbek podczas odkształcania i po odciążeniu pozwoliły na wyznaczenie efektywnej gęstości sieci w fazie amorficznej, a tym samym koncentracji molekularnych przekaźników naprężenia (MST). Badania potwierdziły użyteczność zaproponowanej wcześniejszej metody oceny koncentracji MST na podstawie pomiaru naprężeń resztkowych pozostałych w materiale po jego deformacji przez ściskanie w płaskim stanie odkształcenia (Z. Bartczak, Eur. Polym.J. 2012; 48: 2019-2030. doi: 10.1016/j.eurpolymj.2012.09.006). Stwierdzono, że efektywna gęstość sieci w fazie amorficznej zależy od architektury i długości łańcuchów poprzez ich zróżnicowaną zdolność do krystalizacji – krótsze i pozbawione defektów łańcuchy tworzą strukturę nadcząsteczkową złożoną z grubszych kryształów i charakteryzującą się wyższym stopniem krystaliczności i mniejszą koncentracją łańcuchów łączących sąsiednie lamele (TM) i splątań łańcuchów w fazie amorficznej, co prowadzi do niższych koncentracji MST niż polimerach o wyższej masie cząsteczkowej. Wzrost krystaliczności w wyniku wygrzewania prowadzi do silnego wzrostu koncentracji MST.
EN
Samples of linear polyethylene (HDPE) of different molecular weight and chain architecture were subjected to plastic deformation by compression in the plane-strain compression to various strains. The study of sample behavior during the deformation and after unloading allowed determining the effective density of the network in the amorphous phase and hence the concentration of the molecular stresses transmitters (MST). The study confirmed the relevance of the previously proposed method of estimating MST concentration on the basis of measurement of residual stresses remaining in the material after its deformation (Z. Bartczak, Eur.Polym.J., 2012, 48: 2019-2030., Doi: 10.1016 / j.polypoly.2012.09.006). It was found that effective network density in the amorphous phase and the concentration of MST depend on the architecture and chain length through their different crystallization habits - shorter and less defective chains form a supermolecular structure composed of thicker crystals and show a higher degree of crystallinity and lower concentration of tie molecules and chain entanglement in the amorphous phase. This leads to lower concentrations of MST than in higher molecular weight or more irregular species. The increase in crystallinity upon solid-state annealing leads to a strong increase in MST concentration.
PL
Próbki polietylenu liniowego (HDPE) o różnym stopniu usieciowania poddano deformacji plastycznej przez ściskanie w płaskim stanie odkształcenia do dużych odkształceń, e>2 (stopień ściśnięcia λ>8) w temperaturze pokojowej. Badania strukturalne odkształconych próbek oraz badania procesu relaksacji i zaniku odkształcenia po odciążeniu materiału pokazały, że w nieusieciowanym HDPE aż do prawdziwego odkształcenia e=1 odkształcenie jest całkowicie odwracalne w temperaturze wyższej od temperatury topnienia krystalitów, T>Tm. Dla wyższych odkształceń, e>1, stopniowo pojawia się składowa nieodwracalna odkształcenia i dla e=2.1 trwałe odkształcenie resztkowe wynosi eres=0.36 (T>Tm). Próbki sieciowanego HDPE wykazują natomiast całkowitą odwracalność odkształcenia w temperaturze powyżej Tm w całym zakresie odkształcenia. Źródłem trwałej, nieodwracalnej składowej odkształcenia w materiale nieusieciowanym jest degradacja mechaniczna sieci molekularnej splątanych łańcuchów w fazie amorficznej na skutek zrywania pojedynczych łańcuchów oraz ich rozplątywania. W próbkach usieciowanych gęsta i względnie jednorodna sieć molekularna jest wystarczająco wytrzymała by uniknąć uszkodzenia i zniszczenia.
EN
Samples of linear polyethylene (HDPE) with different degree of crosslinking were subjected to plastic deformation by compression in plane-strain compression up to high strain exceeding true strain of 2 (compression ratio λ>8) at room temperature. Structural studies of deformed samples and investigation of the process of strain recovery after material unloading demonstrated that the deformation of neat, non-crosslinked HDPE appears completely reversible at a temperature above the melting point of the crystalline phase, T>Tm, up to the true strain e=1.0. At higher applied strains, e>1, an irreversible deformation component emerges gradually, and at e=2.1 the permanent residual strain equals approx. eres=0.36 (T>Tm). The cross-linked HDPE samples show complete reversibility of deformation above Tm, irrespectively of an applied strain. The source of permanent irreversible strain component in neat HDPE is a mechanical degradation of the molecular network of entangled chains in the amorphous phase as a result of chain scission and chain disentanglement. In the case of cross-lined materials the dense and relatively homogeneous molecular network is strong enough to avoid damage and degradation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.