Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sieć mózgowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Stress is one of the most significant health problems in the 21st century, and should be dealt with due to the costs of primary and secondary cares of stress-associated psychological and psychiatric problems. In this study, the brain network states exposed to stress were monitored based on electroencephalography (EEG) measures extracted by complex network analysis. To this regard, 23 healthy male participants aged 18–28 were exposed to a stress test. EEG data and salivary cortisol level were recorded for three different conditions including before, right after, and 20 min after exposure to stress. Then, synchronization likelihood (SL) was calculated for the set of EEG data to construct complex networks, which are scale reduced datasets acquired from multi-channel signals. These networks with weighted connectivity matrices were constructed based on original EEG data and also by using four different waves of the recorded signals including d, u, a, and b. In addition to these networks with weighted connectivity, networks with binary connectivity matrices were also derived using threshold T. For each constructed network, four measures including transitivity, modularity, characteristic path length, and global efficiency were calculated. To select the sensitive optimal features from the set of the calculated measures, compensation distance evaluation technique (CDET) was applied. Finally, multi-class support vector machine (SVM) was trained in order to classify the brain network states. The results of testing the SVM models showed that the features based on the original EEG, a and b waves have got better performances in monitoring the brain network states.
EN
Personal identification is particularly important in information security. There are numerous advantages of using electroencephalogram (EEG) signals for personal identification, such as uniqueness and anti-deceptiveness. Currently, many researchers focus on single-dataset personal identification, instead of the cross-dataset. In this paper, we propose a method for cross-dataset personal identification based on a brain network of EEG signals. First, brain functional networks are constructed from the phase synchronization values between EEG channels. Then, some attributes of the brain networks including the degree of a node, the clustering coefficient and global efficiency are computed to form a new feature vector. Lastly, we utilize linear discriminant analysis (LDA) to classify the extracted features for personal identification. The performance of the method is quantitatively evaluated on four datasets involving different cognitive tasks: (i) a four-class motor imagery task dataset in BCI Competition IV (2008), (ii) a two-class motor imagery dataset in the BNCI Horizon 2020 project, (iii) a neuromarketing dataset recorded by our laboratory, (iv) a fatigue driving dataset recorded by our laboratory. Empirical results of this paper show that the average identification accuracy of each data set was higher than 0.95 and the best one achieved was 0.99, indicating a promising application in personal identification.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.