Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  siatka filtracyjna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper provides a theoretical analysis of a filtration process with an inflow of a mixture onto a filtration barrier (in this case, a mesh). In practice, such a process takes place in vacuum or pressure filters, filtration presses or belt filters, which is presented, though in a simplified way, on Figure 1. The general equation for the flow of the liquid through the porous layer as per notation (1) was adapted to a filtration process description as a result of certain assumptions and a conducted theoretical analysis, leading to formulation of a universal equation of mixture filtration with sedimentation on the filtrating mesh, as described in many publications interested readers are referred to [37,39,40]. This publication is a continuation of paper [43], but for sediments with lower compressibility so, i.e. 1/4, 1/5 and 1/6. In notation (3), both output equations, i.e. (2) and (3) differ in presentation of the filtration sediment resistance (1-so). Equation (2) is a derivative of the theoretical analysis of filtration process conducted by T. Piecuch, inter alia [37,39,40], where (2) the general filtration sediment resistance was inserted without any separate calculation of the filtration resistance towards the general parameter of the compressibility coefficient so. According to the assumptions made by T. Piecuch, in equation (2) pressure ΔP, which exists both in the numerator and in the denominator, is the filtration process dispositive pressure, in the literature referred to as the motor pressure, too. This makes for the basic difference with the former theoretical approaches, where the pressure placed in the denominator represented the pressure drop in the filtration sediment layer, and thus, only a part of the so- called dispositive pressure for the course of the given filtration process. In turn, in notation of equation (3), the second component of the denominator, which refers to the sediment resistance, includes a formula, which results from a separate solution of a differential equation of the filtration sediment resistance, by integrating that equation towards the compressibility coefficient so. That approach is typical of the French school classical theory of filtration formulated a 100 years ago, which was transferred to the Polish literature, for instance [7] quite uncritically, while a solution for that resistance differential equation, or leading out a final notation of the resistance equation in the second part of the denominator in equation (3) can be found by the reader on monograph [50]. In equation (3), pressure ΔP, which appears in both the numerator and the denominator, is the dispositive pressure for the given filtration process. Moreover, the simplifying assumption is adopted that the entire suspension (the solid phase), which forms the mixture provided for the filtration process, will take the form of the filtration sediment on the filtrating mesh (VN·βN), and hence the filtrate will be a mechanically clean liquid. The calculations discussed here are based on the filtration equation as per notation (3), where the assumption is that this is going to be filtration at variable values of the motor pressure ΔP, which, in the general mathematical notation of the filtration, presented as variable dx, being a differential equation. Coming over to the simplified form of the filtration equation as per notation (3), as constant values A, B and C were adopted respectively. Therefore, as a result of transformation of the equation as per notation (3) up to the general mathematical formula, it is going to take the form (7) where A, C – certain constant values. A solution of the integral as per notation (7) for individual cases of parameter B, which in a physical notation is related to the compressibility coefficient so, is presented below.1.1. Compressibility coefficient B=1/4 Ultimately, for the compressibility coefficient s so=1/4 the filtration equation will take its form in the physical notation (14): Formula. 1.2. Compressibility coefficient B=1/5 Ultimately, for the compressibility coefficient s so=0,20 the filtration equation will take its form in the physical notation (20): formula 1.3. Compressibility coefficient B=1/6 Ultimately, for the compressibility coefficient s so=1/6, the equation for filtration with a constant flow will take its form in the physical notation (28):Formula Thus, the derived in this paper final equations, with the physical notations (14), (20) and (28), are the final filtration equations for filtration of a mixture flowing onto the filtrating mesh and forming on it a compressible sediment, having the compressibility coefficient s so, as appropriate to values 1/4, 1/5 or 1/6.The reader will find equations derived from the same basic formula of filtration with notation (3), in assumption of a steady flow and variable motor pressure of the process for compressibility coefficient s so equal the values of 1/3, 1/2 and 2/3, respectively, in a publication by the authors, in Annual Set The Environment Protection (vol. 15. 2013) [43]. Filtration equations for compressibility coefficient s so equal 1/4, 1/5 or 1/6 for the basic equation of filtration as in notation (2) , in assumption of a steady flow and variable motor pressure of the process, can be found in the authors’ publication in Mineral Resources Management (No 3. 2014) [48].Filtration equations for compressibility coefficient s so of higher values, equal to 1/3, 1/2 or 2/3, respectively, based on the basic filtration equation as per notation (2), can be found in the authors’ article published in Archives of Environmental Protection (Vol. 39. no 1. 2013). This cycle of these four publications of the authors [34] will be continued by a series based on the general filtration equations as per notations (2) and (3) for the same respective values of the compressibility coefficient s so, and thus: for sediments of conventionally high compressibility, where s so amounts to 1/3, 1/2 or 2/3, or conventionally for sediments of low compressibility , where the compressibility coefficient s so is 1/4, 1/5 or 1/6, but on the assumption that the process motor pressure parameter ΔP, which appears in those equations, is to be constant, while the flow of the liquid in the filtration process is the variable factor. The theoretical analysis of the filtration process, as conducted in this paper, confirmed the general conclusions presented in previous papers on this problem related to determination of final equations for filtration processes with various compressibility coefficients [34,43,48] Having the intention to introduce the possibility to use these final equations to the designing practice, it is necessary to create algorithms appropriate to them, and, on their basis, numeric applications, which is going to be the subject of the authors’ further works in the years to come.
2
Content available remote Przepływ płynów nienewtonowskich przez pakiety siatek filtracyjnych
PL
Badano przepływ płynów newtonowskich i nienewtonowskich o dużych lepkościach przez pojedyncze siatki filtracyjne i pakiety siatek. Jako media doświadczalne zastosowano dwa rodzaje stopionych poli(tereftalanów etylenu) i syrop ziemniaczany (płyny newtonowskie) oraz stopiony polietylen wysokociśnieniowy jako płyn nienewtonowski. Zastosowano 14 różnych drucianych siatek filtracyjnych o gęstości od 64 do 29000 oczek/cm2, używanych do filtracji stopionych polimerów przy produkcji włókien chemicznych. Mierzono opory przepływu przez pojedyncze siatki, przez pakiety zawierające od 2 do 70 jednakowych siatek oraz przez pakiety składające się z 7 różnych siatek w zakresie liczb Reynoldsa od 10-10 do 10-5. W pakietach zawierających mniej niż 10 jednakowych siatek opory przepływu przez pakiety siatek były niższe niż suma oporów przepływu przez pojedyncze siatki, składające się na dany pakiet. Wyniki przedstawiono w formie zależności współczynnika oporów przepływu od liczby Reynoldsa. Zależności te mają jednakowa postać dla wszystkich badanych rodzajów siatek, niezależnie od rozmiarów oczek. Stwierdzono, że klasyczna korelacja Blake-Kozeny’ego stosowana do opisu oporów przepływu przez warstwy ziarniste nie nadaje się do opisu przepływu przez siatki.
EN
Pressure drop during the flow of two molten polymers: poly(ethylene tereththalate) and polyethylene through single screens and sets of screens containing up to 50 screens was experimentally investigated. The pressure drop in the packings was lower than the sum of pressure drops in single screens of which the packing was built. Correlation equations were obtained for the drag coefficient which were independent from the screen mesh per cm(2).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.