Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  siła podnoszenia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A brief review of the existing autonomous underwater vehicles, their types, design, movement abilities and missions is presented. It is shown, the shape optimization design and enhancement of their efficiency is the main problem for further development of multipurpose glider technologies. A comparative study of aerodynamic performance of three different shape designs (the airfoil NACA0022 based (I), flattened ellipsoidal (II) and cigar-type (III) bodies of the same volumes) has been carried out. Geometrical modelling, meshing and computational fluid dynamics (CFD) simulations have been carried out with AnSys15.0. The pathlines and wall shear stress distributions have been computed to understand the advantages and disadvantages of each shape. The lift and drag coefficients, aerodynamic quality, power index and pitching moment have been computed. The higher efficiency of the shape I/shape II at higher/lower angles of attack (greater than 20o and less than 20o) has been found. The shape III develops high speeds at the same angles of attack and has higher manoeuvrability at relatively low aerodynamic quality. The comparative analysis of the flow capabilities of studied autonomous undersea vehicles proposes some design improvement for increasing their energy efficiency and flow stability.
EN
The manuscript presents the methods of increasing the aerodynamic force of the airfoil, currently used in aviation, and the directions of further research development. Currently, several methods are known and used to increase the aerodynamic force of the airfoil. The most widespread ones include wing mechanization systems, among others, flaps and slats. The non-mechanical elements of the wing construction that enable to increase the carrying force are used as well, among others; wing cuffs, vortilons, vortex generator. Research is being carried out on the introduction of mechanical elements that increase the lift force (Continuous Trailing Edge Flap, Morphing Wing), as well as non-mechanical elements such as plasma actuators. The manuscript describes the selected non-mechanical and mechanical elements currently used to increase the lift and the directions for the development of further research on increasing the aerodynamic force.
EN
The manuscript presents selected designs of Dielectric Barrier Discharge (DBD) plasma actuators used to control the flow of the boundary layer on the surface of the wing. The principle of DBD plasma actuator operation and the process of the “ion wind” formation are presented. The manuscript presents the results of the tests carried out on the sash model with the SD 7003 profile and a DBD plasma actuator with two mesh electrodes, for which tests were carried out and tunnel images were recorded.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.