Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  short-term forecast
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the concept and deployment of the agro-hydro-meteorological monitoring system (abbrev. AgHMM) created for the purposes of operational planning of regulated drainage and irrigation on the scale of a drainage/irrigation system (INOMEL project). Monitoring system involved regular daily (weekly readings) measurements of agrometeorological and hydrological parameters in water courses at melioration object during vegetation seasons. The measurement results enable an assessment of the meteorological conditions, moisture changes in the 0-60 cm soil profile, fluctuations of groundwater levels at quarters and testing points, also water levels in ditches and at dam structures, and water flow in water courses. These data were supplemended by 7-day meteorological forecast parameter predictions, served as input data for a model of operational planning of drainage and subirrigation at the six melioration systems in Poland. In addition, it was carried out irregular remote sensing observations of plant condition, water consumption by plants and soil moisture levels using imagery taken by unmanned aerial vehicles and Sentinel’s satellites. All the collected data was used for support operational activities aimed at maintaining optimal soil moisture for plant growth and should to provide farmers with high and stable yields. An example of the practical operations using the AgHMM system in 2019 is shown on the basis of the subirrigation object at permanent grasslands located in central Poland called “Czarny Rów B1”.
2
Content available remote Modeling the earthquake occurrence with time‑dependent processes: a brief review
EN
The complexity of seismogenesis tantalizes the scientific community for understanding the earthquake process and its underlying mechanisms and consequently, precise earthquake forecasting, although a realistic target, is yet far from being a practice. Therefore, seismic hazard assessment studies are focused on estimating the probabilities of earthquake occurrence. For a more precise representation of seismicity-regarding time, space and magnitude stochastic modeling is engaged. The candidate models deal with either a single fault or fault segment, or a broader area, leading to fault-based or seismicitybased models, respectively. One important factor in stochastic model development is the time scale, depending upon the target earthquakes. In the case of strong earthquakes, the interevent times between successive events are relatively large, whereas, if we are interested in triggering and the probability of an event to occur in a small time increment then a family of short-term models is available. The basic time-dependent models that can be applied toward earthquake forecasting are briefly described in this review paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.