Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ship maintenance
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
One of the ways to reduce greenhouse gas emissions and other polluting gases caused by ships is to improve their maintenance operations through their life cycle. The maintenance manager usually does not modify the preventive intervals that the equipment manufacturer has designed to reduce the failure. Conditions of use and maintenance often change from design conditions. In these cases, continuing using the manufacturer's preventive intervals can lead to non-optimal management situations. This article proposes a new method to calculate the preventive interval when the hours of failure of the assets are unavailable. Two scenarios were created to test the effectiveness and usefulness of this new method, one without the failure hours and the other with the failure hours corresponding to a bypass valve installed in the engine of a maritime transport surveillance vessel. In an easy and fast way, the proposed method allows the maintenance manager to calculate the preventive interval of equipment that does not have installed an instrument for measuring operating hours installed.
EN
Ship maintenance is regulated by both the state and the classification society. The scope of maintenance works depends on the age of the ship and includes a dock, intermediate and special inspection. The problem is to estimate the reliable time of the ship maintenance and the downtime at the shipyard. The purpose of this article is to develop a more accurate model to predict a ship’s overall maintenance time. A multiple linear regression model is developed to describe the impact of historical data on hull repair, painting time, piping, age, structural and hull plate replacement for ship maintenance. In the literature, the least squares method is used to estimate unknown regression coefficients. The original value of the article is the use of a genetic algorithm to estimate coefficient values of the multiple linear regression model. Necessary analysis and simulations are performed on the data collected for oil and chemical or product tankers. As a result, a significant improvement in the adequacy of the presented model was identified.
3
Content available A review of human error in marine engine maintenance
EN
Maritime safety involves minimizing error in all aspects of the marine system. Human error has received much importance, being responsible for about 80% of the maritime accident worldwide. Currently, more attention has been focused to reduce human error in marine engine maintenance. On-board marine engine maintenance activities are often complex, where seafarers conduct maintenance activities in various marine environmental (i.e. extreme weather, ship motions, noise, and vibration) and operational (i.e. work overload and stress) conditions. These environmental and operational conditions, in combination with generic human error tendencies, results in innumerable forms of error. There are numerous accidents that happened due to the human error during the maintenance activities of a marine engine. The most severe human error results in accidents due to is a loss of life. Moreover, there are other consequences too such as delaying the productivity of marine operations which results in the financial loss. This study reviews methods that are currently available for identifying, reporting and managing human error in marine engine maintenance. As a basis for this discussion, authors provide an overview of approaches for investigating human error, and a description of marine engine maintenance activities and environmental and operational characteristics.
EN
Unavailability of a ship propulsion system under aging effects and proper maintenance is estimated using GO-FLOW. GO-FLOW is an effective software tool for the unavailability analysis of complex systems. Aging effects are incorporated into GO-FLOW using a time-dependent technique and assuming a linear aging model. The results show that the aging effects and improper maintenance can potentially increase the frequency of accidents due to a malfunction of the propulsion system by a factor of three.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.