Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  shallow water acoustics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Propagation of ship-generated noise in shallow sea
EN
Contamination of sea environment by noise and any energy radiated to water constitutes today a problem to which more and more attention is paid, in view, a.o., of consequences of an impact of these factors onto marine fauna. European Union has introduced a directive by which EU countries are made responsible to undertake efforts aimed at reaching a good envirenmental status of European seas by 2020. A main source of underwater noise is sea transport of any kind. Propagation of underwater acoustic disturbances in the Baltic Sea highly differs from the course of the phenomenon in a deep sea. Model of spherical propagation cannot be applied to this case in view of water environment limitation by seabed and free water surface, i.e. a reduction of the problem to wave propagation in a water layer of the depth comparable with acoustic wave length. This paper is aimed at demonstration of possible assessment of range of acoustic disturbances generated by a ship sailing in shallow sea, by using a method described in the work [13]. The research was made on the basis of results of own measurements of underwater noise produced by ships in the Gdansk Bay area. An important factor which decIdes on a range of underwater disturbances is a kind of seabed sediments. In this paper there are presented results of numerical investigations based on real data dealing with noise produced by a selected floating unit (ship) for selected characteristic spectral components. The simulations were conducted for the shallow sea model of definite physical parameters such as acoustic wave propagation velocity, geometrical dimensions (water depth) and seabed acoustic parameters as well.
EN
The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.
EN
The conditions of the acoustic wave propagation in the southern Baltic are much more complex than in other shallow waters. In the typical shallow water, seasonal changes in acoustical conditions in the upper layer, of the depth of about 60-70 m, are observed. They are caused by variation of the annual meteorological conditions. Most often, in the deep water layer, acoustical conditions are stable throughout the year. However, in the Southern Baltic they change during the year also in the deep water layer. They depend on the inflows of highly saline water from the Northern Sea through the Danish Straits, which evoke a dense bottom current increasing the salinity at the bottom. The vertical sound speed distribution in the Southern Baltic is strongly dependent on the hydrological conditions. In the paper the characteristic elements of acoustic climate of the Southern Baltic will be considered, based on data concerning the Gulf of Gdansk. Averaged characteristics of temperature, salinity and sound speed for the years 2000-2010, as well as anomalies, have been determined.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.