Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  settlement influence factor
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Rafts are frequently used to design foundations on soft soils to minimize the overall and differential settlements of structures built on them. In many cases, the raft alone can offer sufficient bearing capacity and all that is needed to restrict foundation settlements to a predetermined level with a few widely spaced piles. Granular piles (GPs) can be used due to their several advantages over steel or concrete piles. An annular raft foundation is generally provided for overhead water tanks, chimneys, etc. The provision of granular piles underneath the annular raft foundation not only increases the capacity of the foundation but also minimizes the settlement to an acceptable level. The present study deals with a rigorous analysis of annular raft foundation supported by GPs based on the continuum approach. A new numerical method is developed with geometric considerations for excluding the loaded pile portion from the region of the raft area by considering two distinct zones. This article introduces a novel approach, the annular raft over granular piles, which represents an innovative solution in geotechnical engineering. This innovation has the potential to improve the efficiency and effectiveness of foundation design in various construction projects. The response of annular raft foundation with GPs is evaluated in terms of settlement influence factor (SIF), load shared by granular piles (in %), and normalized shear stress variation along the GP–soil interface. The present study reveals that the presence of the pile influences the stress distribution locally. The stiffness of GP, relative length of GP, relative size of the raft influence the settlement and load sharing of annular raft with GPs.
EN
Ground improvement with granular piles increases the load-carrying capacity, reduces the settlement of foundations built on the reinforced ground and is also a good alternative to concrete pile. Granular piles or stone columns are composed of granular material, such as crushed stone or coarse dense sand. An analytical approach based on the continuum approach is presented for the non-linear behaviour of the granular pile. The formulation for pile element displacement is done considering the non-homogeneity of the granular pile as it reflects the true behaviour and also accounts for the changes in the state of the granular pile due to installation, stiffening and improvement effects. The present study shows that the settlement influence factor for an endbearing granular pile decreases with increase in the relative stiffness of the bearing stratum. The settlement influence factor decreases with increase in linear and non-linear non-homogeneity parameters for all values of relative length. For a shorter pile, the rate of decrease of the settlement influence factor is greater in comparison to that for a longer pile. Shear stress at the soil-granular pile interface reduces in the upper compressible portion of the granular pile and increases in the lower stiffer portion of the granular pile due to the non-homogeneity of an endbearing granular pile.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.