Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  setback irregularity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The setback is a frequent type of irregularity expected in complex-shaped buildings. The main purpose of the present paper is to emphasize the influence of setback location on the performance of reinforced concrete building structures under seismic excitation. In this research study, 68 building models with setback values vary from 0.1 L to 0.5 L, located at various levels, are studied. Non-linear static (pushover) analyses were conducted. All building models are analyzed using a finite element calculation code. The outcomes show that setback irregularity location has a significant effect on the seismic behavior of the structure. Based on the regression analysis of the results obtained in the current study, a mathematical formula is proposed to quantify the effect of setback location on the performance of building structures. The results of this study would aid all professionals in the building sector to anticipate the response of these types of structures during the design phase.
2
Content available remote Determination of inelastic seismic demands of RC moment resisting setback frames
EN
In this paper, an extensive parametric study is conducted on plane RC moment resisting frames with setbacks. Firstly, a parameter called as "irregularity index" is proposed based on the dynamic characteristics of the frame to quantify the setback irregularity. Secondly, this paper aims to determine the affect of setback presence on inelastic deformation demands. To achieve this purpose, building frames with different arrangements of setbacks are modeled and designed in accordance with the European standard code of practice. These frames are subjected to an ensemble of 13 ground motions scaled to different intensities in order to obtain different performance levels as prescribed by SEAOC 1995 and analyzed by time history analysis. Results of the analytical study indicate strong influence of the parameters like beam–column strength ratio, number of stories, geometrical irregularity and the performance level under consideration on inelastic seismic demands. Furthermore, a seismic response database consisting of 13,728 non-linear dynamic analyses is generated, and non-linear regression analysis is performed on this database to propose simple formulae to estimate different seismic parameters in terms of the proposed irregularity index. The applicability of author proposed equations in PBD and DBD is briefly discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.