Medicine is one of the most developing branches of knowledge. But even now there are still some diseases which are impossible to cure. Different cancers, antibiotic resistant bacterial infections and fungal pathogenesis infections are still everlasting problems. Thus, two ways of solutions are proposed. First is the return to natural medicines. From the ancient times plants have been used in medicine and the natural products have been an important source of drugs. Nowadays isolation and identification of these compounds, together with the determination of their biological activity, also play an important role. Lactones are the cyclic esters with a wide range of carbon atoms in a lactone ring. They are a very interesting group of compounds which reveal a wide spectrum of biological activity. Terpenoid, especially sesquiterpene lactones and coumarin derivatives, are found in plants of the Asteraceae and Apiaceae families as well as in many others organisms. The naturally occurring lactones often possess anti-inflamatory [1, 2], phytotoxic [3, 4], antiprotozoal [5], and antiviral activities [6]. They are also well known for their anticancer [7, 8] and antimicrobial activities [9, 10]. The second way of obtaining new biologically active lactones is the chemical synthesis of new potent structural analogs of natural bioactive compounds. However, the complexity of natural products and their derivatives may lead to limited supplies, especially when they have the chiral centers which are one of the most important factors influencing their biological activity. It also causes difficulties to determine the mechanism of action. For those reasons, structural simplification plays an important role in the development of analog design. This review is focused on novel literature data about synthetic and natural lactones which reveal anticancer, antibacterial and antifungal activities. Presented compounds show potent biological activity and high selectivity with holding promises for further applications.
The new guaianolide 8-deacetylmatricarin-8-O-sulfate conjugate in free acid and crystalline sodium salt forms, along with six known sesquiterpene lactones and three known phenolics were isolated from Taraxacum alpinum. The compounds were characterized by chemical and spectral methods. This is the first report on sulfated sesquiterpene lactones from Taraxacum species.
A series of guaianolide-type sesquiterpene lactones, including two new natural products, was isolated from the roots of Crepis zacintha. The presence in the plant material of three pairs of guaianolide epimers at C-4 was proved by 1D and 2D NMR spectral methods.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.