Mikrofiltracja (MF) to proces rozdziału składników w roztworze, którego siłą napędową jest różnica ciśnień po obu stronach membrany o wielkości porów od 0,1 do 10 µm. Proces ten w przemyśle mleczarskim jest stosowany do usuwania bakterii i przetrwalników z mleka oraz frakcjonowania miceli kazeinowych i białek serum. Podstawą rozdziału kazeiny i białek serum jest różnica w wielkości cząstek między micelami kazeinowymi (0,2 µm) a białkami serum (0,0036 µm). Dzięki fizycznemu rozdziałowi uzyskane produkty – koncentrat kazeiny micelarnej i koncentrat białek serum – charakteryzują się interesującymi właściwościami funkcjonalnymi. Stwarza to wiele możliwości rozwoju nowych produktów spożywczych.
EN
Microfiltration (MF) is a pressure- -driven separation process using membranes with a pore diameter ranging from 0.1 to 10 µm. The two most common applications of MF in the dairy industry are removal of bacteria and spores from skim milk and separation of micellar casein from serum proteins (SP). Separation of micellar casein from SP in skim milk relies on the difference in size between casein micelles (0.2 µm) and SP (0.0036 µm). Physically-based separation process produces micellar casein concentrate (MCC) and serum protein concentrate (SPC) with interesting functional properties. New ingredients, such as MCC and SPC, create a lot of opportunities in the area of new food product development.
Chromatoelectrophoresis is a laboratory technique which depicts changes in multiple protein fractions inclusively. The combined, simultaneous analysis based on two key protein features (charge and molecular weight) offers a unique opportunity for better understanding of serum protein composition as well as it indicates the fraction which needs more thorough investigation. Because of those promising features, the chromatoelectrophoresis with automated analysis is expected to be a valuable laboratory test, aiding the process of medical diagnosis. However, without information technology support, analyzing the results of chromatoelectrophoresis would be tedious and time-consuming. For better optimization, both an algorithm for output image analysis and application with user-friendly interface were developed. Planning, development and testing were conducted at AGH University of Science and Technology and Jagiellonian University, Medical College in Cracow, Poland. With this article, we present the results of the first year of cooperation, code-named ChromSee.org project. The algorithm for distinguishing, naming and analyzing the content of fractions, the application and their utility in real-life settings are described, as well as potential future developments.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.