Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  separable metric spaces
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Uniform continuity and normality of metric spaces in ZF
EN
Let X = (X, d) and Y = (Y, ρ) be two metric spaces. (a) We show in ZF that: (i) If X is separable and f: X → Y is a continuous function then f is uniformly continuous iff for any A, B ⊆ X with d(A, B) = 0, ρ (f(A), f(B)) = 0. But it is relatively consistent with ZF that there exist metric spaces X, Y and a continuous, nonuniformly continuous function f : X → Y such that for any A, B ⊆ X with d(A, B) = 0, ρ (f(A), f(B)) = 0. (ii) If S is a dense subset of X, Y is Cantor complete and f : S → Y a uniformly continuous function, then there is a unique uniformly continuous function F : X → Y extending f. But it is relatively consistent with ZF that there exist a metric space X, a complete metric space Y, a dense subset S of X and a uniformly continuous function f : S → Y that does not extend to a uniformly continuous function on X. (iii) X is complete iff for any Cauchy sequences (xn)n∈N and (yn)n∈N in X, if [wzór] then d({xn : n ∈ N},{yn : n ∈ N}) > 0. (b) We show in ZF+CAC that if f : X → Y is a continuous function, then f is uniformly continuous iff for any A, B ⊆ X with d(A, B) = 0, ρ (f(A), f(B)) = 0.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.