Let C be a ρ-bounded, ρ -closed, convex subset of a modular function space Lρ. We investigate the existence of common fixed points for semigroups of nonlinear mappings Tt : C → C, i.e. a family such that T0(x) = x, Ts+t = Ts(Tt(x)), where each Tt is either ρ -contraction or ρ -nonexpansive. We also briefly discuss existence of such semigroups and touch upon applications to differential equations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.