In 1988 it was proved by the first author that the closure of a partially semialgebraic set is partially semialgebraic. The essential tool used in that proof was the regular separation property. Here we give another proof without using this tool, based on the semianalytic L-cone theorem (Theorem 2), a semianalytic analog of the Cartan-Remmert-Stein lemma with parameters.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we prove two fundamental lemmas of sub-Pfaffian geometry which are counterparts of Lemmas A and B for subanalytic sets [4]. We use a generalized version of the Tangent Mapping Theorem [2], following our program announced in [11].
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper deals with an axiomatic theory T[sub an] and the expansion R[sub an] of the ordered field of reals, formed by attaching the restricted analytic functions. We show that the theory T[sub an] is model-complete, which may be regarded as a version of Gabrielov's complement theorem. Our proof is based on Robinson's test and it does not involve a partition technique. An immediate corollary is that T[sub an] coincides with the semantic theory Th(R[sub an]) of all sentences true in the structure R[sub an].
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.