Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  semi-submersible platform
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In order to ensure the safety and reliability of the horizontal brace of semi-submersible platform (SEMI) which functions as the supporting structure in SEMI, this article presents an elastic-plastic method to analyze the variations of the crack tip opening displacement, elastic zone and plastic zone of the cracked section of the horizontal brace under beam wave. The brace of the SEMI was assumed to be located a circumferential through crack at its boundary in this article. In addition, the cracked section of the brace has been divided into crack zone, tensile plastic zone, elastic zone and compressive plastic zone in the presented theoretical model. Moreover, the closed form of the solution has been found in this article which is especially suitable solving complicated problems in practical engineering application. Also, a typical new-generation SEMI that is in practical use was selected to analyze the variation tendency of the cracked brace’s parameters using the proposed model which could give good suggestion to semi-submersible platform designers and managers.
2
EN
The paper presents two different methods of physical modeling of semi-submersible platform mooring system for research in low depth towing tank. The tested model was made in the scale of 1:100 resembling the “Thunder Horse” platform moored in the Gulf of Mexico at a depth of 1920 m. Its mooring system consisted of 16 semi-taut mooring lines (chain-wire-chain) spaced star-shape and attached at the bottom to suction piles. The tests were performed in the towing tank of the Gdansk University of Technology (GUT). The tank depth is 1.5 m and which is about 13.5 times less than that required for typical model tests. This required the development and use of non-standard methods of mooring for the model, which was adapted to the technical conditions existing in the laboratory and material possibilities. Numerical calculations and characteristics of static displacement of the model as a function of the external horizontal load were carried out for both anchoring systems. These characteristics were scaled to the natural conditions and compared with the calculated characteristics of the reference platform. The second method of modeling proved to be much more accurate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.