Purpose: The objective of this study is to comprehensively investigate the printability characteristics of a selective laser melting (SLM) system, which will be achieved through the development of a benchmark test part. In addition, the effect of the build location on the dimensional accuracy and precision of 316 L stainless steel parts produced by SLM was thoroughly evaluated. Design/methodology/approach: The benchmark part was designed using Catia CAD software. Parts were printed using a professional SLM 3D printer and 316L stainless steel powder as a material. Findings: The results showed that to achieve exceptional dimensional accuracy in SLM parts, it is important to select the build location carefully. They also highlighted the critical role of gas distribution control in improving the precision of layer-by-layer deposition. The thorough evaluation of dimensional deviations at different build locations showed that optimal results were consistently achieved at position F within the build cham-ber. Research limitations/implications: Further studies could investigate other factors affecting dimensional variations and surface roughness and enhance the comprehension of the interactions between the process parameters and the building position on the build platform. Originality/value: The paper outlines the creation and production of a benchmark model used to assess the maximum capacity of SLM systems in manufacturing parts with ultimate dimensional precision. The effects of build location on dimensional accuracy are also explored in the given study.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This work focuses on the study of the selective laser melting (SLM) fabrication parameter of AlSi10Mg specimen. SLM parameters such as Power and scanning speed are varied to identify the defect-free samples. In addition, X-ray diffraction (XRD) analysis is carried out on the AM AlSi10Mg specimen to study the presence of phase. The results reveal that the Al matrix possesses (200), (220) and (311) phases whereas the AlSil0Mg powder has (111), (200), (220) and (311) phases. The microstructural characterization based on FESEM, TEM and EBSD analysis is carried out. The cross-section of the molten pool appears as a semi-cylindrical shape in the section that is parallel to the plane of powder deposition. The height, width and depth of the molten pool are measured as 150 ± 10 μm, 450 ± 10 μm and 50 ± 10 μm, respectively. TEM analysis reveals that the Si-precipitate and the eutectic Si element of the AM AlSi10Mg specimen are clearly formed in the AM AlSi10Mg specimen. Si precipitate spread within the grains whereas, the eutectic Si element is present at the grain boundary of the specimen. Then, the nanohardness and nanowear behavior are analyzed. Further, the influence of strain rate on the tensile strength is investigated. These mechanical tests are carried out on the defect-free AM AlSi10Mg specimen to assess its maximum performance. Very rough as well as irregular fracture surfaces are observed in the tensile test AM AlSi10Mg specimen. In addition to it, its magnified image reveals that the specimen fracture in the form of river patterns and contains a lot of micron-sized pores throughout the fracture surfaces.
Selective laser melting is one of the additive manufacturing technologies that is used to produce complex-shaped components for applications in the automotive industry. The purpose of the changes in the design, technology, and material tests was to make a steering gear housing using the SLM method. The steering gear housing was produced by the pressure casting method using an AlSi9Cu3(Fe) alloy. The construction of this housing is adapted to the specifics of left-hand traffic. The change in technology was related to the change of the position of the steering system from right-hand to left-hand and the demand for a limited number of gear housings. It was necessary to make a virtual model of the housing on the basis of the part that was removed from the vehicle. In SLM technology, the AlSi10Mg aluminum alloy was used as a raw material in the form of CL 32Al gas-atomized powder. After the SLM process was completed, the housings were subjected to heat treatment. The AlSi10Mg alloy fabricated by the SLM method after heat treatment is characterized by good plasticity and an average value of tensile strength. The last stage was to check the geometry of the SLM housing with a 3D scanner. As a result, a map of the dimensional deviations from the nominal values was obtained. This data was used to modify the CAD model before the next fabrication process. The use of 3D printing technology allowed for the quick production of elements. The time to develop the technology and the production of the first two gear housings based on a 3D model was seven days.
The paper presents the scopes of examination of the cancellous bone, 3D CAD design of scaffolds of the cancellous bone and their creation with a laser beam in SLM incremental technology. The geometrical size of the scaffold and the material feature corresponding to the Young's modulus are the parameters describing the porous structure of the cancellous bone. In the statistical analysis, these values are defined as independent variables. The physical properties of the scaffold are defined by the strength parameters determined by hardness (e.g. HIT, HM, HV and are dependent variables). The REGMULT multiple regression program was used to develop the research results. However, to optimize the porous structure of the scaffold, the single-criteria optimization program SYEQL3 was used.
PL
W pracy przedstawiono zakresy badania kości gąbczastej, projektowania 3D CAD rusztowań (skaffoldów) kości gąbczastej oraz ich tworzenia wiązką lasera w technologii przyrostowej SLM. Parametrami opisującymi porowatą strukturą kości gąbczastej są: wielkości geometryczne rusztowania oraz cecha materiałowa odpowiadająca modułowi Younga. Wielkości te w analizie statystycznej definiowane są jako zmienne niezależne Własności fizykalne rusztowania zdefiniowane przez parametry wytrzymałościowe (twardości, np. HIT, HM, HV) są zmiennymi zależnymi. Do opracowania wyników badań zastosowano program regresji wielokrotnej o nazwie REGMULT. Do optymalizacji struktury porowatej skaffoldu, wykorzystano program optymalizacji jednokryterialnej SYEQL3.
Industries that rely on additive manufacturing of metallic parts, especially biomedical companies, require material science-based knowledge of how process parameters and methods affect the properties of manufactured elements, but such phenomena are incompletely understood. In this study, we investigated the influence of selective laser melting (SLM) process parameters and additional heat treatment on mechanical properties. The research included structural analysis of residual stress, microstructure, and scleronomic hardness in low-depth measurements. Tensile tests with specimen deformation analysis using digital image correlation (DIC) were performed as well. Experiment results showed it was possible to observe the porosity growth mechanism and its influence on the material strength. Specimens manufactured with 20% lower energy density had almost half the elongation, which was directly connected with the porosity growth during energy density reduction. Hot isostatic pressing (HIP) treatment allowed for a significant reduction of porosity and helped achieve properties similar to specimens manufactured using different levels of energy density.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Additive manufacturing has recently expanded its potential with the development of selective laser melting (SLM) of metallic powders. This study investigates the relation between the mechanical properties and the microstructure of Ti6Al4V alloy produced by SLM followed by a hot isostatic pressing (HIP) treatment. HIP treatment minimizes the detrimental influence of material defects. Tensile specimens produced with reference to specific building axes were prepared using a Renishaw A250 system. It has been found that the tensile strength and elongation depend on specimen building direction. Microstructural and textural characterizations were carried out to identify the source of differences.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The purpose of the article is to present the design and fabrication methodology of metallic scaffolds, with the shape and dimensions defined by the designer, coated with a thin layer of polymer. Design/methodology/approach: The methodology proposed covers Computer Aided Materials Design (CAMD), fabrication of metallic scaffolds using a machine for Selective Laser Melting (SLM), the deposition of a thin layer of polymers onto scaffolds using coldwork and hot-work polymerisers, as well as mechanical finishing. The strength of the newly developed metal-polymer composites to three-point bending was examined and their fractures were viewed with SEM. Findings: A fabrication method of implants in the form of scaffolds coated with a thin layer of polymer with the dimensions and shape closely matching the losses in a patient’s hard and/or soft palate. Practical implications: After clinical tests, a metal-polymer implant may be a very beneficial alternative for patients with palate losses using traditional prostheses until now. Originality/value: The individualised implants of palate pieces in the form of scaffolds coated with a thin layer of polymer, submitted for patent protection, do not have their counterparts, which is representing their originality.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: of the present paper is to offer treatment protocol with fixed partial dentures, produced by selective laser melting, including clinical and laboratory parts. Design/methodology/approach: The treatment protocols with selective laser melted fixed partial dentures was developed on the basis of literature survey and our previous research about accuracy and mechanical properties of dental bridges, manufactured by additive technologies. Findings: The treatment protocol with fixed partial dentures, produced by selective laser melting, consisting of clinical and laboratory parts, was developed. The treatment procedures with FPD made by SLM were classified as semi-digital when working with extraoral scanner and fully-digital - with intraoral scanner. Research limitations/implications: The introduction of the proposed treatment protocol into the clinical and laboratory practice would lead to a systematic approach and working optimization for prosthodontists and dental technicians when using selective laser melting. Practical implications: Due to the elimination of multiple manual manipulations and technological operations, treatment protocols with FPD, produced by SLM, ensure higher accuracy and quality of the constructions and shorter time for their manufacturing compared to the conventional procedure. Originality/value: The developed clinical and laboratory protocols for the treatment and manufacturing of FPD through SLM clearly show the benefits of the new technology in dentistry and dental technician field.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Zaprezentowano optymalizację procesu selektywnego topienia laserowego z uwzględnieniem gęstości elementu oraz czasu jego wytwarzania. Przedstawiono wyniki badań mikrostruktury i gęstości elementów wykonanych ze stopu AlSi10Mg – potwierdziły one, że zwiększenie odległości pomiędzy kolejnymi przejściami wiązki lasera pozwala na znaczące skrócenie czasu wytwarzania elementów, a jednocześnie na nieznaczne zwiększenie porowatości materiału, przy czym powstałe pory mają charakter stochastyczny.
EN
Described is the work on optimization of the parameters of Selective Laser Melting process with reference to manufacturing cycle and density of the produced components. Consequently, there are presented results of the examination of microstructures and density of the samples produced from the AlSi10Mg alloy powder. Achieved results confirmed that wider spacing of the laser scanning lines if applied for considerably shorter manufacturing cycles, will only insignificantly increase porosity of the machined components with the pores stochastically distributed.
Podjęto pracę nad zaprojektowaniem nowej konstrukcji endoprotezy krążka międzykręgowego odcinka lędźwiowego kręgosłupa, której komponenty metalowe wykonano ze stopu CoCrMo przy zastosowaniu technologii selektywnego topienia laserowego (SLM). Do badań porównawczych zostały wytworzone endoprotezy metodą obróbki skrawaniem z zastosowaniem obrabiarek sterowanych numerycznie (CNC). Wykonane prototypy poddano testom tribologicznym z wykorzystaniem symulatora kręgosłupa SBT-03.1. Celem pracy było określenie potencjału technologii SLM w procesie wytwarzania elementów endoprotez krążka międzykręgowego oraz określenie wpływu tej technologii na opory tarcia oraz ilość generowanych produktów zużycia.
EN
Work on the design of a new construction of intervertebral disc prosthesis of the lumbar spine has been started; the metal components of this endoprosthesis have been manufactured of CoCrMo alloy using the technology of selective laser melting (SLM). For comparative studies, the endoprostheses have been manufactured by machining with the use of numerically controlled machine tools (CNC). The fabricated prototypes have undergone the tribological tests using the SBT-03.1 spine simulator. The aim of the study was to determine the potential of SLM technology in the fabrication process of the elements of intervertebral disc endoprosthesis and to determine the impact of this technology on friction resistance and the amount of generated wear debris.
The aim of the research, the results of which are presented in the paper, is to fabricate, by Selective Laser Melting (SLM), a metallic scaffold with Ti6Al4V powder based on a virtual model corresponding to the actual loss of a patient’s craniofacial bone. A plaster cast was made for a patient with a palate recess, and the cast was then scanned with a 3D scanner to create a virtual 3D model of a palate recess, according to which a 3D model of a solid implant was created using specialist software. The virtual 3D solid implant model was converted into a 3D porous implant model after designing an individual shape of the unit cell conditioning the size and three-dimensional shape of the scaffold pores by multiplication of unit cells. The data concerning a virtual 3D porous implant model was transferred into a selective laser melting (SLM) device and a metallic scaffold was produced from Ti6Al4V powder with this machine, which was subjected to surface treatment by chemical etching. An object with certain initially adopted assumptions, i.e. shape and geometric dimensions, was finally achieved, which perfectly matches the patient bone recesses. The scaffold created was subjected to micro-and spectroscopic examinations.
PL
Celem badań, których wyniki zaprezentowano w artykule jest wytworzenie, metodą selektywnego topienia laserowego (SLM), scaffoldu metalowego z proszku Ti6Al4V na podstawie wirtualnego modelu odpowiadającego rzeczywistemu ubytkowi kości twarzoczaszki pacjenta. Od pacjenta z ubytkiem podniebienia pobierano wycisk gipsowy, który następnie zeskanowano za pomocą skanera 3D, w celu uzyskania wirtualnego modelu 3D ubytku podniebienia, na podstawie którego z użyciem specjalistycznego oprogramowania utworzono model 3D litego implantu. Po zaprojektowaniu indywidualnego kształtu komórki jednostkowej, determinującej wielkość i trójwymiarowy kształt porów scaffoldu, poprzez multiplikację komórek jednostkowych przekształcono wirtualny model 3D implantu litego w model 3D implantu porowatego. Dane dotyczące wirtualnego modelu 3D implantu porowatego przetransferowano do urządzenia służącego do selektywnego topienia laserowego (SLM) i z użyciem tej maszyny z proszku Ti6Al4V wytworzono metalowy scaffold, który poddano obróbce powierzchniowej poprzez trawienie chemiczne. Finalnie otrzymano obiekt o założonych na wstępie: kształcie i wymiarach geometrycznych, które idealnie odpowiadają ubytkowi kości pacjenta. Wytworzony scaffold poddano badaniom mikro i spektroskopowym.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.