Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 44

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  selective laser sintering
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
Purpose: This review analyses different approaches used to study selective laser sintering (SLS) technology of polymer materials. These main approaches concern: thermal behaviour, fatigue and surface roughness. Design/methodology/approach: Regarding the first behaviour, researchers extensively studied the impact of process parameters, including scan speed, laser, power and laser energy density, on the thermal behaviour of 3D printed parts. Numerical and experimental analyses are used to conduct process parameter evaluations. Findings: Laser power and scan speed are the most significant parameters of the laser energy density. For the second, according to test protocols and quantitative analysis performed, the authors concluded that the combination of small and large laser energy density particles generates higher sintering and better fatigue resistance. Moreover, tensile analysis in different environments showed that testing in the water decreased the fatigue life of polymer samples. The influence of process parameters on the mechanical properties and surface roughness of 3D parts is also analysed. In addition, the investigators found that the additives increase the surface roughness of 3D printed parts. Practical implications: This review shows that researchers can focus on creating a combination of these approaches to expand the use of this process for industrial part production. Originality/value: All these investigations have made it possible to determine the optimal process conditions to ensure higher quality, optimal surface quality and better fatigue strength.
EN
Research in additive manufacturing of tungsten carbide-cobalt has intensified over the last few years due to the increasing need for products designed using topology optimisation and multiscale structures (lattice). These products result in complex shapes and contain inner structures that are challenging to produce through conventional techniques, thus involving high costs. The present work addresses this problem using a two-step approach to 3D print parts with complex shapes and internal structures by employing indirect selective laser sintering (SLS) and tungsten carbide-cobalt sintering. The paper takes further our research in this field [1] to improve the part density by using high bulk density tungsten carbide-cobalt powders. Mechanically mixing tungsten carbide-cobalt with the sacrificial binder, polyamide 12, results in a homogenous powder successfully used by the selective laser sintering process to produce green parts. By further processing, the green parts through a complete sintering cycle, an average final part density of 11.72 g/cm3 representing more than 80% of the theoretical density is achieved.
EN
The paper presents a detailed description of the method of carrying out static tensile tests in ex-situ X-ray computed tomography (XCT) conditions. The study compares samples manufactured with the use of additive technology in two orientations, horizontally and vertically, which correspond to the in-layer and between-layer sintering mechanisms. Both the fracture mechanism and porosity behavior differed significantly for the two manufacturing directions. The conducted analysis made it possible to compare the changes in porosity, the number of pores, and also their diameters and shape before and after the tensile test. This allows for in-depth identification and better understanding of the phenomena occurring during the static tensile test of polyamide-12 samples manufactured using selective laser sintering (SLS) technology.
PL
Opisano badania struktur hollow sphere, wykorzystanych jako absorbery energii mechanicznej. W pierwszej części artykułu przedstawiono techniki obróbki addytywnej – selektywnego spiekania laserowego – jako optymalnej metody wytwarzania próbek w przypadku badań laboratoryjnych. W kolejnej części zaprezentowano zastosowanie komputerowego wspomagana projektowania do tworzenia parametrycznych trójwymiarowych modeli badanych struktur. Następnie przedstawiono wyniki badań eksperymentalnych w warunkach quasi-statycznego obciążenia tych materiałów. Na podstawie zebranych danych przeprowadzono analizę jakościową procesu deformacji struktur oraz wyciągnięto wnioski.
EN
The research of hollow sphere structures as absorbers of mechanical energy is described. The first part of the article is devoted to the description of selective laser sintering additive technique as the optimal method of sample production in the case of laboratory tests. The next part presents the use of computer aided design to create parametric three-dimensional models. Next, the results of experimental tests in the conditions of quasi-static load are presented. Based on the collected data, a qualitative analysis of the structure deformation process was performed and final conclusions are presented.
EN
In this study we demonstrate an overview about possibilities in using additive manufacturing for tissue engineering and orthopedic prosthesis. We show the possibilities to produce scaffolds by using a low cost commercial stereolithography system under the use of biocompatible hydrogels like Poly(ethylene glycol) diacrylate. We also demonstrate that it is possible to use a low cost selective laser sintering system to produce individual prostheses to support the healing process in many orthopedic issues.
EN
Purpose: The paper presents the issues of designing the maintenance of materials and products in accordance with the idea of Industry 4.0. The author's views on the need for augmentation of the Industry 4.0 model were also presented, as well as the author's original concept that hybrid activities in predictive maintenance and condition-based maintenance should be preceded by designing material, maintenance & manufacturing 3MD at the stage of the product's material designing and technological designing. The 3MD approach significantly reduces the frequency of assumed actions, procedures and resources necessary to remain the condition of this product for the longest possible time, enabling it to perform the designed working functions. Examples of own advanced research on several selected, newly developed materials, used in very different areas of application, confirmed the validity of the scientific hypothesis and the relationship between the studied phenomena and structural effects and the working functions of products and their maintenance and indicated that material design is one of the most important elements guaranteeing progress production at the stage of Industry 4.0 of the industrial revolution. Design/methodology/approach: The author's considerations are based on an extensive literature study and the results of the author's previous study and empirical work. Each of the examples given required the use of a full set of research methods available to modern material engineering, including HRTEM high-resolution transmission electron microscopy. Findings: The most interesting intellectual achievements contained in the paper include presentations of the author's original concepts regarding the augmentation of the Industry 4.0 model, which has been distributed so far, which not only requires augmentation but is actually only one of the 4 elements of the technology platform of the extended holistic model of current industrial development, concerning cyber-IT production aided system. The author also presents his own concept for designing material, maintenance and manufacturing 3MD already at the stage of material and technological design of the product, eliminating many problems related to product maintenance, even before they are manufactured and put into exploitation. Detailed results of detailed structural researches of several selected avant-garde engineering materials and discussion of structural changes that accompanying their manufacturing and/or processing are also included. Originality/value: The originality of the paper is associated with the novelty of the approach to analysing maintenance problems of materials and products, taking into account the requirements of the contemporary stage of Industry 4.0 development. The value of the paper is mainly associated with the presentation of original issues referred to as findings, including the concept of augmentation of the Industry 4.0 model and the introduction and experimental confirmation of the idea by designing material, maintenance and manufacturing 3MD.
EN
In the present study, a titanium cellular lattice structure with a mathematical designed porosity gradient was successfully fabricated using the selective laser melting method. The samples with smooth gradient transition of porosity of between 60% and 80% were received for different elementary cell geometries. Elementary cells belong to the triply periodic minimal surfaces family (G, D, I2Y, IWP). Each sample was subjected to a comprehensive analysis including: dimensional metrology and assessment of material defects (X-ray micro-tomography), surface morphology tests (scanning electron microscopy) and mechanical properties (universal testing machine). It has been shown that a cellular lattice with high dimensional accuracy (+ 0.16/– 0.08 mm) and full dense struts can be obtained. According to the assumption, the gradient increases the strength of the cellular lattice samples. The highest increase in plateau stress between the samples with and without gradient was found for the I2Y series (about 185%). Furthermore, it was found that the stress-strain response of the samples depends not only on total porosity, but also on the 3D geometry of the cellular lattice. The stress-strain curves for G, IWP and I2Y samples are smooth and exhibit three characteristic regions: linear elasticity, plateau region and densification region. The size of regions depends on the geometric features of the cellular lattice. For series D, in the plateau region, the fluctuations in stress value are clearly visible. The smoothest stress-strain curve can be noted for the G series, which combined with good mechanical properties (the plateau stress and energy absorbed, at respectively 25.5 and 43.2 MPa, and 46.3J and 59.5J for Gyr_80 and Gyr_6080, which corresponds to a strain of almost 65% and 50%) positively affects the applicability of cellular structures with such geometry.
EN
Purpose: The publication aims to find the relationship between the proliferation of surface layers of living cells and the deposition of thin atomic layers deposition ALD coatings on the pores internal surfaces of porous skeletons of medical and dental implant-scaffolds manufactured with the selective laser deposition SLS additive technology using titanium and Ti6Al4V alloy. Design/methodology/approach: The extensive review of the literature presents the state-of-the-art in the field of regenerative medicine and tissue engineering. General ageing of societies, increasing the incidence of oncological diseases and some transport and sports accidents, and also the spread of tooth decay and tooth cavities in many regions of the world has taken place nowadays. Those reasons involve resection of many tissues and organs and the need to replace cavities, among others bones and teeth through implantation, more and more often hybridized with tissue engineering methods. Findings: The results of investigations of the structure and properties of skeleton microporous materials produced from titanium and Ti6Al4V alloy powders by the method of selective laser sintering have been presented. Particularly valuable are the original and previously unpublished results of structural research using high-resolution transmission electron microscope HRTEM. Particular attention has been paid to the issues of surface engineering, in particular, the application of flat TiO2 and Al2O3 coatings applied inside micropores using the atomic layers deposition ALD method and hydroxyapatite applied the dip-coating sol-gel method, including advanced HRTEM research. The most important part of the work concerns the research of nesting and proliferation of live cells of osteoblasts the hFOB 1.19 (Human ATCC - CRL - 11372) culture line on the surface of micropores with surfaces covered with the mentioned layers. Research limitations/implications: The investigations reported in the paper fully confirmed the idea of the hybrid technology of producing microporous implants and implant-scaffolds to achieve original Authors’ biological-engineering materials. The surface engineering issues, including both flat-layered nonorganic coatings and interactions of those coverings with flat layers of living cells, play a crucial role. Originality/value: Materials commonly used in implantology and the most commonly used materials processing technologies in those applications have been described. Against that background, the original Authors' concept of implant-scaffolds and the application of microporous skeleton materials for this purpose have been presented.
EN
Purpose: The article concerns the development of completely new groups of composite materials that can be used to produce functional replacements for damaged bones or teeth. Design/methodology/approach: A selective laser sintering was used to produce the reinforcement of those materials from titanium and its Ti6Al4V alloy in the form of skeletons with pores with adjustable geometric features. The matrix of those materials is either air or crystallised from the liquid AlSi12 or AlSi7Mg0.3 alloys condition after prior vacuum infiltration or human osteoblast cells from the hFOB 1.19 (Human ATCC - CRL - 11372) culture line. Findings: The porous material may be used for the non-biodegradable scaffold. After implantation into the body in the form of an implant-scaffold one, it allows the natural cells of the patient to grow into the pores of the implant, and it fuses with the bone or the appropriate tissue over time. The essential part of the implant-scaffold is the porous part inseparably connected with the core of solid materials. Into pores can grow living cells. Research limitations/implications: Biological-engineering composite materials in which natural cells were cultured in the pores in the laboratory next are combined as an artificial material with the natural cells of the patient in his/her body. Practical implications: The hybrid technologies of the all group of those materials were obtained and optimised. Numerous structure research was carried out using the most modern research methods of contemporary materials engineering, and mechanical tests and biological research involving the cultivation of natural cells were realised. Originality/value: The results of the research indicate the accuracy of the idea of implementing a new group of biological-engineering materials and the wide possibilities of their application in regenerative medicine.
11
Content available remote Koła zębate wykonane drukarką 3D
PL
W artykule pokazano fundamentalne informacje na temat jednej z głównych technik wytwarzania przyrostowego, czyli metody selektywnego spiekania laserowego (SLS). Opisano rodzaje czynników i ich wpływ na jakość uzyskiwanych tą metodą modeli. Przedstawiono wymagania stawiane materiałom polimerowym wykorzystywanym w technice SLS oraz dokonano przeglądu literatury z ostatnich lat, dotyczącej nowych materiałów dedykowanych metodzie SLS.
EN
In the article, the fundamental information about one of the main techniques for incremental methods of production, that is, selective laser sintering (SLS) was described. Pointed out the types of factors and their influence on the quality of obtained by this method models. The requirements for polymer materials used in SLS technology were introduced and discussed. A review of the literature in recent years, concerning new, dedicated SLS method materials was presented.
EN
The article points out the need for knowledge about the relationships of many technological features for items produced by selective laser melting of metal powders. The importance of the orientation of the produced element relative to the work table of the machine both in terms of the effect on the mechanical properties and surface quality of the product is shown. Inaccuracies in shape and representation of the real dimensions of the internal and external outlines are presented. The anisotropy of the structure and the resulting differentiation is shown. Attention is paid to different conditions in the incremental production in the area of one layer where the consolidation of the metal powder takes place in one impact of the laser beam, and the connection with the next layers is carried out by thermal effect from the preceding layer, in a much lower temperature. The ability to remove the anisotropy of the structure by homogenizing annealing is shown. Knowledge of the characteristics of the articles produced with incremental technologies is extremely important when selecting production parameters, especially in case of designing responsible machine parts subjected to higher loads.
PL
W artykule wskazano na potrzebę wiedzy o zależnościach wielu cech technologicznych dla elementów wytwarzanych na drodze selektywnego stapiania laserowego z proszków metali. Określono znaczenie zorientowania wytwarzanego elementu względem stołu roboczego maszyny, zarówno w aspekcie wpływu na właściwości mechaniczne wyrobu oraz jakość powierzchni wykonanego kształtu. Wskazano na niedokładności kształtu oraz odwzorowanie wymiarów rzeczywistych wykonanych zarysów wewnętrznych i zewnętrznych. Wykazano anizotropię struktury i wynikające z tego zróżnicowanie. Zwrócono uwagę na różne warunki wytwarzania przyrostowego w obszarze jednej warstwy, gdzie konsolidacja metalicznego proszku przebiega w trakcie jednego oddziaływania wiązki laserowej. Natomiast połączenie ze sobą kolejnych warstw odbywa się poprzez wpływ cieplny powstającej warstwy na poprzednią, w znacznie niższej temperaturze. Wykazano możliwość usunięcia anizotropii struktury przez wyżarzanie ujednorodniające. Wiedza o właściwościach wyrobów wytwarzanych w technologii przyrostowej jest niezwykle istotna przy doborze parametrów wytwarzania, szczególnie w przypadku projektowania odpowiedzialnych części maszyn poddanych większym obciążeniom.
EN
Additive manufacturing is a very fast developing field of research and many parts with complicated geometry are now made using 3D printing. The injection molding, casting, milling and other processes have some limitations and low volume of production makes these processes quite expensive. 3D printing allows to fabricate parts with enough mechanical strength and without looking at the above mentioned limitations. Nowadays, designers are able to fabricate prototypes with not only optimized but also complex shape. Unfortunately, the parts made from thermoplastic materials by means of 3D technique have lower mechanical strength in comparison to the parts made by using injection molding process. The orientation of layers, thickness of a layer, porosity, and process parameters have a big influence on mechanical properties of the fabricated parts. In this paper, the experimental results from the static tensile tests, the compression tests and the dynamic three-point bending test are presented. The tests were performed for different orientations of printing specimens. It was shown that to assess the mechanical properties of printing parts (made by using selective laser sintering (SLS) technique)our own measurements need to be obtained. The available catalogue data are not sufficient for further investigations like in the finite element (FE) analyses.
EN
Construction of metallic implants with a porous structure that mimics the biomechanical properties of bone is one of the challenges of orthopedic regenerative medicine. The selective laser sintering technique (SLS) allows the production of complex geometries based on three-dimensional model, which offers the prospect of preparing porous metal implants, in which stiffness and porosity can be precisely adjusted to the individual needs of the patient. This requires an interdisciplinary approach to design, manufacturing and testing of porous structures manufactured by selective sintering. An important link in this process is the ability to assess the surface topography of the struts of porous structure. The paper presents a qualitative assessment of the surface morphology based on SEM studies and methodology that allows for quantitative assessment of stereometric structure based on micro-tomographic measurements.
EN
Selective laser sintering (SLS) is a type of laminating sintering technique, using CO2 laser with (metal, polymer, and ceramic) powders. In this result, the flake SUS 316L was used to achieve a high porous product, and compare to spherical type. After SLS, the porosity of flake-type sample with 34% was quite higher than that of the spherical-type one that had only 11%. The surface roughness of the flake SLS sample were also investigated in both inner and surface parts. The results show that the deviation of the roughness of the surface part is about 64.40μm, while that of the internal one was about 117.65μm, which presents the containing of high porosity in the uneven surfaces. With the process using spherical powder, the sample was quite dense, however, some initial particles still remained as a result of less energy received at the beneath of the processing layer.
PL
Zaprezentowano optymalizację procesu selektywnego topienia laserowego z uwzględnieniem gęstości elementu oraz czasu jego wytwarzania. Przedstawiono wyniki badań mikrostruktury i gęstości elementów wykonanych ze stopu AlSi10Mg – potwierdziły one, że zwiększenie odległości pomiędzy kolejnymi przejściami wiązki lasera pozwala na znaczące skrócenie czasu wytwarzania elementów, a jednocześnie na nieznaczne zwiększenie porowatości materiału, przy czym powstałe pory mają charakter stochastyczny.
EN
Described is the work on optimization of the parameters of Selective Laser Melting process with reference to manufacturing cycle and density of the produced components. Consequently, there are presented results of the examination of microstructures and density of the samples produced from the AlSi10Mg alloy powder. Achieved results confirmed that wider spacing of the laser scanning lines if applied for considerably shorter manufacturing cycles, will only insignificantly increase porosity of the machined components with the pores stochastically distributed.
EN
Nowadays the developed Additive Manufacturing (AM) technologies deliver many new opportunities to manufacturing companies. One of their benefits may be the elimination of costly tools in the passage from design to production. This cost is one of crucial factors of decision making process about the use of technology in a defined production case. The managers have to determine at which quantity of produced goods the purchase of tooling is profitable. The objective of the paper is to present literature review about economic aspects of AM and the analysis of production cost of a medium size plastic component in the SLS process compared to the cost of the same part produced with injection moulding (IM).
EN
Purpose: The aim of the article is to present the technology of the manufacturing of composite materials with aluminum alloys matrix with reinforcement made of titanium skeletons. This paper presents the structure and properties of these composite materials. Design/methodology/approach: Titanium skeletons manufactured by SLS technology for certain mechanical properties and geometrical features, subjected to infiltration of cast aluminium alloys: AlSi12, AlSi7Mg0.3 thereby obtain a composite materials AlSi12/Ti and AlSi7Mg0.3/Ti. Findings: The results of examinations of mechanical properties of aluminium alloys: AlSi12, AlSi7Mg0.3, titanium skeletons and composite materials AlSi12/Ti, AlSi7Mg0.3/Ti, show that the reinforcement of aluminium alloys AlSi12, AlSi7Mg0.3 with porous titanium skeletons has a beneficial effect on the mechanical properties of the composite materials AlSi12/Ti, AlSi7Mg0.3/Ti. Practical implications: The principal aim of modern composite materials with a reinforcement in the form of a porous metallic skeleton they are employed, among others, in the automotive, aviation, machine and space industry as well as in medicine. Originality/value: The use of SLS technology in combination with infiltration technology creates prospects production of composite materials having improved properties and a wide range of applicability.
PL
Połączenie podbudowy protetycznej z warstwą porcelany ma znaczący wpływ na jakość uzupełnienia dentystycznego. Rozwój selektywnej laserowej mikro metalurgii proszków, przyczynił się do rozpoczęcia badań tej technologii w dziedzinie techniki dentystycznej. W artykule przedstawiono ocenę wpływu kondycjonowania piaskiem Al2O3 o gradacji: 50μm, 110μm, 250μm, powierzchni spieków przygotowanych laserowo, na klasę połączenia z fazą licującą. Wnioski zostały formułowane na podstawie wyników z przeprowadzonych pomiarów chropowatości i falistości powierzchni spieków laserowych.
EN
The foundation prosthetic connection with a layer of porcelain has a significant impact on the quality of the dental supplement. The development of selective laser micro powders metalurgy, has contributed to the start of the examination of this technology in the field of dental technology. The article presents an impact assessment conditioning sand Al2O3 grit : 50μm, 110 μm, 250 μm, laser- sintered surface prepared, class connection with the phase of the veneering. Proposals were formulated based on the results of the measurements of roughness and waviness floor space laser sintered.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.