Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  seismic profile
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents the results of an analysis of selected seismic profiles (reflection and refraction data) from the Radom-Lublin area aimed at obtaining a better understanding of geological structure and the identification of hydrocarbon deposits. To accurately reproduce the seismic reflection covering the sub-Permian formations, seismic cross sections were interpreted based on effective reflection coefficients (ERC). In interpreting the results, reference was made to the results of studies of the area using other geophysical methods. The results of these studies made it possible to obtain new information on the geology and structure of the Paleozoic complex of the Radom-Lublin area and its relationships with the basement tectonics. The structural arrangement of Carboniferous and Devonian formations as well as older Silurian, Ordovician, and Cambrian series were recognized. Selected significant tectonic and lithological discontinuities and the nature and directions of their course were characterized. Special attention was given to regional tectonic zones: the Skrzynno Fault, the Ursynów-Kazimierz fault zone and the Kock zone. The use of ERC methodology made it possible to define the boundaries of lithostratigraphic units in Carboniferous, Devonian, and older formations. The obtained results can be used to assess hydrocarbon accumulation in the area under consideration.
PL
Artykuł prezentuje wyniki analizy wybranych profili sejsmicznych (refleksyjnych i refrakcyjnych) z obszaru radomsko-lubelskiego w celu uszczegółowienia budowy geologicznej oraz rozpoznania występowania złóż węglowodorów. W celu precyzyjnego odwzorowania danych sejsmicznych refleksyjnych obejmujących utwory podpermskie wykorzystano interpretację przekrojów sejsmicznych w wersji efektywnych współczynników odbicia EWO. W interpretacji wyników odwołano się do rezultatów badań tego obszaru z wykorzystaniem innych metod geofizycznych. Wyniki badań pozwoliły na uzyskanie nowych informacji o budowie geologiczno-strukturalnej kompleksu paleozoicznego obszaru radomsko-lubelskiego i jego związkach z tektoniką podłoża. Rozpoznano układ strukturalny utworów karbonu i dewonu oraz starszych serii syluru, ordowiku i kambru. Scharakteryzowano wybrane, istotne nieciągłości tektoniczne i litologiczne oraz charakter i kierunki ich przebiegu. Szczególną uwagę poświęcono regionalnym strefom tektonicznym: uskok Skrzynna, strefa uskokowa Ursynów-Kazimierz oraz strefa Kocka. Wykorzystanie metodyki EWO pozwoliło na prześledzenie granic wydzieleń litostratygraficznych w utworach karbonu i dewonu oraz starszych, a uzyskane wyniki mogą być pomocne dla oceny akumulacji węglowodorów na rozważanym obszarze.
EN
The tectonic settings investigated by several seismic projects in previous research targeting the structure in Central Poland mainly focused on the Earth’s crust. In this paper, we present P-wave velocity verification in the uppermost mantle beneath LUMP profile towards SSE-NNW. Using recordings of 36 DATA-CUBE recorders from ca. 300–490 km far earthquake in coal mine “Janina” in southern Poland, we calculated travel times to verify P-wave velocity below the Moho boundary from previous studies. It shows that a significantly lower mean velocity value should be used for the upper mantle while counting these offsets of travel times in the SSE-NNW direction than that used on previous profiles. We present two possible models: first, the most simple one that fits the observed first arrivals, and the second with a low-velocity layer beneath the Moho boundary. In both cases, we used a priori crustal model focusing only on P-wave velocity in the uppermost mantle. Both of them significantly improved adjustment of travel times to the observed data. To evaluate the tendency of adopting too high velocities beneath the Moho, we used also 11 broadband stations, Reftek 151-121 “Observer”, from “13 BB Star” passive experiment and 6 STS-2 seismometers from permanent stations of the Polish Seismological Network (PLSN).
EN
The Qingdong area, located in Bohai bay basin, was suspected good exploration prospects. In order to study tectonic features and find out favourable petroleum prospects in the area, the gravity data at a scale of 1:50,000 were interpreted. This paper, through data processing and synthetic interpretation of the high-precision gravity data in the area, discusses characteristics of the gravity field and their geological implications, determines the fault system, analyses features of the main strata, divides structure units and predicts favourable petroleum zones. The results showed that the faults controlled the development of the Mesozoic and Cenozoic strata and the distribution of local structures in this area. The study revealed that the Qingtuozi uplift and the Kendong uplift in the north were formed in Mesozoic, and the Qingdong depression in the middle was the rift basin in Mesozoic and Cenozoic. Thicker strata in Mesozoic and Cenozoic developed in the Dongying depression and the Qingdong depression, so there is abundant hydrocarbon in these two depressions, and then the Guangligang rise-in-sag and the Qingdong rise-in-sag developed in the center in these two depressions are also favorable places for prospecting
PL
Modelowanie reologii litosfery przeprowadzono wzdłuż przekroju sejsmicznego LT-7. Przecina on w poprzek strefę szwu transeuropejskiego (TESZ), cechującą się znaczną oboczną zmiennością struktury skorupy ziemskiej oraz reżimu termicznego. W zależności od warunków fizycznych oraz składu mineralnego deformowanego ośrodka skalnego, przypisywano mu styl deformacji kruchy lub podatny. Przyjęto, że wielkość naprężeń dyferencjalnych w warstwach kruchych ograniczona jest tarciem na powierzchniach uskoków, natomiast w warstwach podatnych oporem pełźnięcia dyslokacyjnego sieci krystalicznej. Jako dane do przeprowadzonych analiz wykorzystano sejsmiczny model prędkościowy wzdłuż refrakcyjnego przekroju LT-7, rozkład gęstości powierzchniowego strumienia cieplnego wzdłuż przekroju, a także, przez analogię do obszarów sąsiednich, miąższość mechanicznej litosfery oraz produkcję ciepła radiogenicznego. Dla pozostałych parametrów modelowania przyjęto wartości standardowe z literatury. Poszczególnym warstwom modelu sejsmicznego przypisano zgeneralizowany skład mineralny oraz stałe materiałowe, charakteryzujące deformacje podatne. W pierwszej kolejności wykonano profile temperaturowe litosfery, które następnie wykorzystano w modelach reologicznych. Jednowymiarowe modelowanie dla każdego profilu przeprowadzono dla wariantów zmiennych parametrów termicznych, zmierzając do uzyskania płynności zmian strumienia cieplnego z płaszcza i miąższości termicznej litosfery między profilami. Wyliczone wartości strumienia cieplnego z płaszcza są zmienne od 20 mW/m2 na kartonie wschodnioeuropejskim, przez 20-35 mW/m2 w strefie TESZ (z maksymalnymi wartościami w jej SW części), do 25-30 mW/m2 na platformie waryscyjskiej w Niemczech. Miąższość termicznej litosfery w poszczególnych, powyżej wymienionych strefach, wyniosła odpowiednio: 170-200 km, 90-160 km oraz 110-140 km. Główną cechą analizowanego profilu reologicznego, jest osłabienie litosfery w jego centralnej części, tj. na skraju platformy paleozoicznej i w sąsiadującej z nią części TESZ. Strefa tego osłabienia pokrywa się z obszarem podwyższonego strumienia cieplnego. W jej obrębie niemal zanika wytrzymałość górnego płaszcza. Wzdłuż całej pozakratonicznej części profilu, w obrębie środkowej i dolnej skorupy wyraźne zaznacza się strefa osłabienia, stanowiąca warstwę o miąższości ok. 20 km. Osłabienie to powoduje mechaniczne rozdzielenie górnej skorupy i górnego płaszcza. Jedynie na kratonie wschodnioeuropejskim poszczególne warstwy litosfery są mechanicznie spojone ze sobą. Obliczona całkowita wytrzymałość litosfery w kontrakcji zmienia się od 30-50 ×1012 N/m na kartonie wschodnioeuropejskim, przez 15-25 ×1012 N/m w strefie TTZ oraz poniżej 5 ×1012 N/m w SW części strefy TESZ, do 5-15 ×1012 N/m w na platformie waryscyjskiej. Analiza wrażliwości modelu wykazała, że zmienność parametrów termicznych w realistycznych granicach ma znaczny wpływ na wytrzymałość litosfery, lecz nie rzutuje na jej generalne rozwarstwienie reologiczne. Dodatkowo stwierdzono, że niezależne określenie miąższości mechanicznej litosfery jest podstawowym warunkiem sporządzenia wiarygodnego modelu reologicznego dla omawianego obszaru.
EN
The present study concerns rheological structure of the Trans-European Suture Zone (TESZ) and neighbouring tectonic units in Poland and SE Germany, along the LT-7 deep seismic sounding (DSS) profile. The SW-NE trending transect, 560 km in length, crosses the Variscan platform (VP - without its TESZ segment), part of the TESZ composed of external Variscan orogen and its foreland (VSZ- Variscan Suture zone), the Teisseire-Tornquist Zone (TTZ), and terminates on the western slope of the East European Craton (EEC; fig. 1). Both complex crustal structure and significant lateral changes in surface heat flow along the LT-7 profile make it an attractive object for study of the rheological differentiation of lithosphere. 1-D temperature and rheological modelling was performed for 10 sites located along the LT-7 profile. The most important and best-constrained input data are seismic wave velocity structure (fig. 2) and surface heat flow density (fig. 3). A simplified petrological model (fig. 4) based on P-wave velocity differentiation has been founded on a concept of quartz/diorite/diabase/pyroxenite/olivine layering of the lithosphere. Lithosphere temperature profiles for each site were derived by analytical solutions of Fourier 's law, applied to two layer crust model with the mantle being infinite half-space. For analysed sites, for each petrological defined layer constant value of radioactive heat production and thermal conductivity were assumed (fig. 4). For calculations of strength envelopes, Byerlee 'sfrictional law, for brittle layers and powerlaw creep for ductile layers were used. An assumption of wet rheology was generally applied. In order to narrow the range of possible solutions, the rheological models were to fulfill three principal conditions: (1) Thickness of thermal lithosphere should laterally vary from 70 km to 200 km (constrained by extrapolated seismological data). (2) Mantle heat flow and lithospheric thickness should change smoothly from site to site. (3) Cumulative strength of the lithosphere for the strain rate 10^-16 s^-1 should always be higher than 2-10^12 N/m (neotectonic quiescent of the analysed area indicates that the lithosphere sustains plate boundary forces). In spite of poor control on some input data and no restrictive principal conditions, possible solutions of the model fall into a narrow range of options. Performed modelling allowed to estimate cumulative lithospheric strength along the profile (fig. 5a), which changes of more than an order of magnitudefrom 30-50 *10^12 N/m at the edge of the EEC, through 15-25 -10^12 N/m in the TTZ and less then 5-10n N/m in the VSZ, to J 15-10^12 N/m in the VP. Calculated mantle heat flow (fig. 5b) varies in a range from 20 m W/m2 in the EEC, through 20-35 m W/m2 in I lie TESZ (with maximum values at its SW boundary), to 25-30 m W/m2 in the VP. For the same segments of the profile thickness of thermal lithosphere estimated on 170-200km, 90-160 km and 110-140 km (fig. 5c), respectively. Additionally, thermal modelling led also to some constraints on the radioactive heat production in the upper crust. The first-order feature of the obtained rheological section (llg. Sc) is that the transition zone from the VSZ to the VP is extremely weak. As evidenced from coincidence with high surface and manile heat /low, observed mechanical weakening is thermally controlled. The second significant outcome of the model is the existence of i hfological layering of the lithosphere. Apart of the EEC, only two strong layers were recognised, namely uppermost crust and uppermost manile. These layers are separated by extremely weak lower crust, more than 20 km thick. For the lithosphere of the EEC three or lour strong layers were recognised. Some of them might be mechanically welded to each other. Sensitivity of the rheological model to variability of radioactive heat production and surface heat flow has been also examined (fig. 6). Changes of these parameters in realis-lu range lead to significant differences in the shape of strength envelopes and thickness of thermal lithosphere. This leads to the con-i luston, that any independent control on lithospheric thickness would be crucial for improving quality of rheological model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.