Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  seismic ambient noise
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Seismic ambient noise (SAN) energy can potentially blur regional and teleseismic arrivals as well as various microearthquakes at specific frequencies. Therefore, quantification of the SAN energy level in a region is required to optimize seismic station distribution for seismological investigations. Moreover, evaluation of station performance and noise source is possible from observation of SAN energy levels. The SAN energy distribution from seismic stations in the Bengal Basin (BB), Bangladesh has not yet been estimated. At the same time, this tec-tonically active and complex region is less studied using seismic methods. This study aims to quantify SAN energy and characterize its diurnal variation along with evaluating station performance at 11 seismic stations, which were temporarily installed in the deeper portion of the BB. Herein, the daily SAN energy level was determined within the period range of 0.02–30 s by estimating the power spectral density (PSD) of seismic data for 7 continuous days. SAN energy and its variation over time were observed using the probability density functions (PDFs) of PSDs and spectrograms, respectively. The sources of SAN energies at different period bands were also investigated by comparing the PSDs with daily variations in human activities, nearby noise sources, local meteorological factors (i.e., air temperature and precipitation), and sea level height. The insights from this study could be useful for the future deployment of seismic networks as well as seismological studies in the BB.
EN
Broadband seismic networks are becoming more intensive, generating a large amount of data in the long-term collection process. When processing the data, the researchers rely almost on instrument response files to understand the information related to the instrument. Aiming at the process of instrument response recording and instrument response correction, we identify several sources of the instrument response phase error, including pole–zero change, the causality difference in instrument correction method, and the problem of filter coefficient recording. The data time offset range from the instrument response phase error is calculated from one sample point to several seconds using the ambient noise data recorded by multiple seismic stations. With different data delays, the time offset of the noise correlation function is estimated to be 74% to 99% of the data delay time. In addition, the influence of instrument response phase error on the measurement of seismic velocity change is analyzed by using ambient noise data with pole–zero change, and the results show that the abnormal wave velocity with exceeding the standard value is exactly in the time period of the instrument response error, which indicates that the instrument response error affects the study of seismology.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.